Функции сосудистой системы – 15. — —

Содержание

Кровеносная система человека:анатомия, строение и функции, патологии

В медицине строение сердечно-сосудистой системы человека (сокращенно ССС) считается наиболее сложным. В его структуру входит сердце и кровеносная система, состоящая из трубок разного диаметра. Анатомия человека показывает, что чем ближе к сердцу, тем шире эти протоки, и тем они малочисленнее. В целом кровеносная система выглядит как обширная сеть, опутывающая каждый миллиметр человеческого тела.

У человека, как и у большинства высших животных, кровеносная система имеет замкнутую структуру. Это значит, что она имеет вид круговой цепочки, состоящей из нескольких отделов. Они, в свою очередь, разделены на так называемые бассейны, отвечающие за кровоснабжение отдельных органов или систем. Регулируется кровеносная система нервно-рефлекторными механизмами, благодаря чему внутренняя среда организма сохраняет стабильность на фоне изменения внешних и внутренних условий существования.

Строение сердечно-сосудистой системы человека

У анатомического строения сердечно-сосудистой системы человека есть множество особенностей. Например, у отдельно взятых индивидов внешний вид и функциональность кровеносной системы человека может быть различным, даже если они находятся в близкородственной связи. Так, величина и расположение сердца в средостении индивидуальна для мужчин и женщин, взрослых и детей, как и размеры вен и артерий.

Схожесть анатомии наблюдается в топографии органов сердечно-сосудистой системы: сердце локализовано в грудной клетке, от него отходят наиболее крупные сосуды, которые затем разветвляются на более мелкие. Практически параллельно им располагаются сосуды лимфатические.

До определенного момента анатомы считали кровеносную и лимфатическую системы единым целым. Окончательно разделили их лишь к концу 19-го века.

Со временем строение кровеносной системы человека может изменяться под действием внешних факторов. Наибольшее распространение присущи возрастным изменениям сердечно-сосудистой системы, которые происходят постепенно. Приобретенные патологии считаются менее распространенными, хотя имеют более выраженные тяжелые последствия для здоровья. Все это дает основания для того, чтобы называть ССС не окончательно стабильной системы организма.

Сердце

Среди всех органов кровеносной системы сердце занимает центральное положение. Именно оно является «насосом», обеспечивающим непрерывность кровотока в сосудах. Сердце представляет собой полый орган, состоящий из мышц, которые сокращаются ритмично под влиянием посылаемых продолговатым мозгов импульсов. Внутри оно разделено системой перегородок и клапанов на четыре части: левый и правый желудочки, левое и правое предсердие.
Стенка сердца состоит из трех слоев:

  1. Эндокард — внутренний слой, состоящий из нескольких типов клеток. Поверхность мышечных волокон, сухожильных нитей и клапанов покрыта эндотелиальными клетками, а под ними находится базальная мембрана и рыхло-волокнистый субэндотелий. Под этими слоями располагается тонкий слой из смешанных мышечных и эластичных волокон, соединяющийся посредством тонкого слоя соединительных клеток с миокардом.
  2. Миокард — средний слой сердца, состоящий из поперечнополосатых мышц. Клетки этого вида ткани соединены в спирально расположенные нити, окружающие все камеры сердца. Основная масса мышечных клеток миокарда относится к типу сократительных мышц. Менее 1/3 мышечной массы сердца представлено проводящими и секреторными кардиомиоцитами. Между всеми типами кардиомиоцитов располагаются соединительнотканные промежутки, пронизанные сетью капилляров.
  3. Эпикард — наружный слой сердца, состоящий из рыхлого слоя из соединительных клеток, и более плотного — из мезотелиальных. В соединительной ткани располагаются нервные волокна и кровеносные сосуды. Поверхность сердца покрыта слоем жировой ткани.

Все слои сердца удерживаются фиброзным скелетом, образованный несколькими кольцами из плотной соединительной ткани и пучками коллагена, хрящевыми пластинками и эластичными волокнами.

Тоны сердца

При сокращении и расслаблении сердце издает звуки. В кардиологии (науке, изучающей строение, функции и заболевания сердца) их называют тонами. Выделено два тона сердца:

  • Систолический — возникающий при колебаниях створок двух- и трехстворчатых клапанов, натягивании сухожилий сердца. Его основные особенности — высокая продолжительность и низкий уровень звуковых колебаний.
  • Диастолический — возникающий в момент полного захлопывания клапанов аорты и артерий легочного ствола. Его особенности — короткая продолжительность и высокий уровень звуковых колебаний.

В норме тоны сердца гармоничны и ритмичны. Средняя частота сокращений сердца у здорового человека в состоянии покоя составляет от 60 до 70 ударов в минуту.

Сосуды

Кровеносная система человека состоит из разнокалиберных полых трубок, которые делятся на два типа: магистральные и участвующие в обменных процессах. Магистральная кровеносная система — это крупные сосуды, которые выполняют исключительно транспортную функцию и делятся на два вида:

  • артерии, несущие кровь от сердца к органам и тканям организма;
  • вены, несущие кровь от органов и тканей к сердцу.

Артериальная сеть состоит из главной артерии кровеносной системы — аорты, а также множества более мелких ответвлений, постепенно переходящих в артериолы. Стенка сосудов такого типа толстая и эластичная, с выраженным мышечным слоем, благодаря чему они сопротивляются давлению крови и с усилием проталкивают ее к отдаленным участкам.

Венозная кровеносная система состоит из крупных, средних и мелких вен. Большие по диаметру сосуды располагаются около сердца, а при удалении от него разветвляются на более мелкие. Вены постепенно становятся все более тонкими и переходят в венулы.

Замыкается кровеносная система, состоящая из артерий и вен, микроциркуляторным руслом, состоящим из артериол, капилляров, и венул, а также из артериовенулярных анастомозов. Эта часть русла осуществляет обменные функции. Здесь происходит отдача клетками крови кислорода и диффузия углекислого газа и продуктов переработки из тканей.

Круги кровообращения

Основной особенностью замкнутой кровеносной системы является наличие нескольких кругов кровообращения. Каждый из них состоит из обособленных, последовательно соединенных петель, начало которых находится в желудочках сердца, а конец — в предсердиях.

Полезно знать! Единственным местом, в которой кровь из всех кругов кровообращения может смешиваться, является сердце.

ССС человека состоит из двух основных кругов кровообращения (сокращенно КК):
  1. Большой КК — начинается левым желудочком, а заканчивается правым предсердием. Основная его функция — доставка артериальной крови во все органы и ткани. В обратном направлении (к сердцу) движется кровь, насыщенная углекислым газом и продуктами жизнедеятельности организма.
  2. Малый КК — начинается правым желудочком и заканчивается левым предсердием. В артериях малого круга течет венозная кровь, которая при прохождении через легкие отдает углекислый газ и насыщается кислородом. Артериальная кровь возвращается в сердце по венам.

Помимо основных кругов кровообращения в организме присутствуют дополнительные: сердечный, отвечающий за кровоснабжение сердца и является часть большого КК, и виллизиев, компенсирующий недостаточное кровоснабжение головного мозга. У женщин во время беременности формируется плацентарный КК, отвечающий за кровоснабжение плода в матке.

Функции

В организме человека кровеносная система выполняет несколько функций. Основная — транспортная — состоит в доставке биологической жидкости ко всем органам и тканям, и выведении продуктов метаболизма. Также к ее функциональным предназначениям относятся дополнительные подфункции:

  • защитная — компоненты крови обеспечивают клеточную и гуморальную защиту от проникновения чужеродных тел;
  • дыхательная — благодаря крови осуществляется газообмен в тканях и органах;
  • питательная — кровеносная система является основным способом доставки питательных веществ к тканям и органам;
  • выделительная — доставка продуктов метаболизма в легкие и почки, где они перерабатываются и выводятся во внешнюю среду;
  • терморегуляторная — кровеносная система способна выравнивать температуру организма для предотвращения гипер- и гипотермии отдельных частей тела или органов.

Еще одной подфункцией, которая предопределяет физиологию сердечно-сосудистой системы, является регуляторная функция. Кровеносная система считается основной транспортной магистралью, по которой перемещаются гормоны, ферменты и другие биологические вещества, синтезированные внутренними органами, железами и тканями. Эти соединения, в свою очередь, могут отразиться на функциях сердечно-сосудистой системы. Например, выброс адреналина усиливает сердечный выброс, сужает периферические сосуды и направляет основные объемы крови к жизненно важным органам: сердцу, головному мозгу, а также к скелетным мышцам.

Патологии


Несмотря на замкнутость и относительную стабильность, кровеносная система часто подвергается патологическим изменениям. В число распространенных болезней сердечно-сосудистой системы специалисты включают:

  • заболевания стр

bloodvessel.ru

Функции сосудистой системы Основные принципы гемодинамики.

Сердечно-сосудистая система человека состоит из двух последовательно соединенных отделов: а) большой круг кровообращения, насосом для этого отдела служит левый желудочек. б) малый (легочный) круг кровообращения. Насосом этого круга является правый желудочек. Соответственно в эти желудочки кровь поступает из левого и правого предсердий. Между двумя кругами кровообращения имеются принципиальные функциональные различия. Объем крови, выбрасываемый в большой круг кровообращения, должен быть распределен по всем органам и тканям; разные органы имеют различную потребность в кровоснабжении как в покое, так и особенно при их деятельности. Что касается легочного (малого) круга, то через эти сосуды проходит такое же количество крови (так как систолический и минутный объемы левого и правого желудочков одинаковые), но к правому сердцу предъявляются относительно постоянные требования и для регуляции легочного кровотока требуется менее сложная система, чем для большого круга.

Основным фактором обеспечивающим кровоток по сосудистой системе является разность (градиент) давлений между различными отделами сосудистой системы. Этот градиент давления является силой, преодолевающей гидродинамическое сопротивление, которое зависит от архитектуры сосудистого русла (например, числа, длины, диаметра, и степени ветвления сосудов) и вязкости крови.

Скорость кровотока

Различают линейную и объемную скорость кровотока.

Линейная скорость отражает скорость продвижения частиц крови вдоль сосуда в единицу времени. Она различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда она максимальна, а около стенки сосуда минимальна, т.к. велико трение частиц крови о стенку. Линейная скорость кровотока снижается от аорты к капиллярам, а затем вновь возрастает в венах. Она составляет в: аорте около 50 см/с, крупных артериях 40-45, капиллярах — 0,05-0,07 см/с, венах — 10-25 см/с, полых венах — 30-33 см/с. Линейная скорость кровотока зависит от суммарного просвета кровеносных сосудов. Чем больше суммарный просвет, тем меньше скорость кровотока. Наименьшая скорость кровотока в капиллярах. Это объясняется тем, что суммарный просвет капилляров примерно в 500-600 раз больше просвета аорты. Медленный ток крови в капиллярах обеспечивает нормальные обменные процессы между кровью и тканями. В венах скорость кровотока вновь возрастает, так как при слиянии вен суммарный просвет их уменьшается (например, зависимость скорости течения воды от ширины русла реки очень четко прослеживается. При одном и том же объеме воды через узкое русло реки она течет быстро, а через широкое — медленно). Линейная скорость кровотока в аорте и легочной артерии увеличивается в момент систолы и становится несколько ниже в момент диастолы сердца. В капиллярах и венах скорость постоянна.

Линейная скорость кровотока неодинакова в толще текущей крови, т.к. в физиологческих условиях наблюдается ламинарное, или слоистое, течение крови. Все частицы крови перемещаются только параллельно оси сосуда. Слой, прилегающий к стенке сосуда как бы «прилипает» к ней и остается неподвижным. По этому слою скользит второй слой, по нему третий и т.д. Максимум скорости наблюдается в центре сосуда. Особенностью ламинарного кровотока является и то, что чем крупнее частицы крови, тем ближе они располагаются к оси сосуда и имеют наибольшую скорость кровотока. В центральном (осевом потоке) в основном располагаются эритроциты, образуя компактный цилиндр внутри оболочки из плазмы.

При определенных условиях ламинарное течение может превратиться в турбулентное. Для этого вида течения характерны завихрения, а течение крови происходит не только параллельно оси сосуда, но и перпендикулярно. Эти завихрения увеличивают внутреннее трение, что приводит к некоторому снижению градиента давления. Локальные завихрения могут быть у разветвления сосудов. В период изгнания крови из желудочков в аорту и легочную артерию наблюдается физиологическое турбулентное движение крови в этих сосудах. Принято считать, что в предсердиях происходит также турбулентное движение крови. Такое движение, по-видимому, необходимо для перемешивания (в частности левом предсердии) и равноменрного распределения оксигенированной крови.

Объемная скорость кровотока — показатель, характеризующий перемещение определенного объема крови через поперечное сечение сосуда в единицу времени (выражается в мл/с). Объем крови, протекающий в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаковый. Отток крови от сердца соответствует ее притоку. Стало быть, объем крови, протекающий в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков (при нарушении этого явления может наблюдаться застой в каких-то отделах сосудистой системы). Это, однако, не значит, что региональный (органный) кровоток всегда постоянен. При повышении активности органа (например, мышц при физической нагрузке) объемная скорость кровотока может многократно увеличиться. Увеличение органного кровотока обеспечивается как за счет перераспределения, так и за счет увеличения минутного объема крови.

studfile.net

Сердечно-сосудистая система человека: функции, строение

Сердечно-сосудистая система человека (кровеносная — устаревшее название) – это комплекс органов, обеспечивающих снабжение всех участков организма (за небольшим исключением) необходимыми веществами и удаляющих продукты жизнедеятельности. Именно сердечно-сосудистая система обеспечивает все участки тела необходимым кислородом, а потому является основой жизни. Нет кровообращения только в некоторых органах: хрусталик глаза, волос, ноготь, эмаль и дентин зуба. В сердечно-сосудистой системе выделяют две составные части: это собственно комплекс органов кровообращения и лимфатическая система. Традиционно они рассматриваются отдельно. Но, несмотря на их разность, они выполняют ряд совместных функций, а также имеют общее происхождение и план строения.

1

Строение системы кровообращения

Анатомия системы кровообращения подразумевает ее разделение на 3 компонента. Они значительно различаются по строению, но в функциональном отношении представляют собой единое целое. Это следующие органы:

  • сердце;
  • сосуды;
  • кровь.

Строение и функции сердечных клапанов

1.1

Сердце

Своеобразный насос, перекачивающий кровь по сосудам. Это мышечно-фиброзный полый орган. Находится в полости грудной клетки. Гистология органа различает несколько тканей. Самая главная и значительная по размерам – мышечная. Внутри и снаружи орган покрыт фиброзной тканью. Полости сердца разделены перегородками на 4 камеры: предсердия и желудочки.

У здорового человека частота сердечных сокращений составляет от 55 до 85 ударов в минуту. Это происходит на протяжении всей жизни. Так, за 70 лет происходит 2,6 млрд сокращений. При этом сердце перекачивает около 155 млн литров крови. Вес органа колеблется от 250 до 350 г. Сокращение камер сердца называется систолой, а расслабление – диастолой.

Строение и значение кругов кровообращения человека

1.2

Сосуды

Это длинные полые трубки. Они отходят от сердца и, многократно разветвляясь, идут во все участки организма. Сразу по выходу из его полостей сосуды имеют максимальный диаметр, который по мере удаления становится меньше. Различают несколько типов сосудов:

  • Артерии. Они несут кровь от сердца к периферии. Сама крупная из них – аорта. Выходит из левого желудочка и несет кровь ко всем сосудам, кроме легких. Ветви аорты делятся многократно и проникают во все ткани. Легочная артерия несет кровь к легким. Она идет из правого желудочка.
  • Сосуды микроциркуляторного русла. Это артериолы, капилляры и венулы — самые маленькие сосуды. Кровь по артериолам идет в толще тканей внутренних органов и кожи. Они ветвятся на капилляры, которые осуществляют обмен газами и другими веществами. После чего кровь собирается в венулы и течет дальше.
  • Вены — сосуды, несущие кровь к сердцу. Они образуются при увеличении диаметра венул и их многократном слиянии. Самые крупные сосуды данного типа – нижняя и верхняя полые вены. Именно они непосредственно впадают в сердце.

Строение и роль артериальной системы в организме человека

1.3

Кровь

Своеобразная ткань организма, жидкая, состоит из двух главных компонентов:

  • плазма;
  • форменные элементы.

Плазма – жидкая часть крови, в которой находятся все форменные элементы. Процентное соотношение — 1:1. Плазма представляет собой мутную желтоватую жидкость. В ней содержится большое количество белковых молекул, углеводов, липидов, различных органических соединений и электролитов.

К форменным элементам крови относят: эритроциты, лейкоциты и тромбоциты. Они образуются в красном костном мозге и циркулируют по сосудам всю жизнь человека. Только лейкоциты при некоторых обстоятельствах (воспаление, внедрение чужеродного организма или материи) могут проходить через сосудистую стенку в межклеточное пространство.

У взрослого человека содержится 2,5-7,5 (зависит от массы) мл крови. У новорожденного — от 200 до 450 мл. Сосуды и работа сердца обеспечивают важнейший показатель кровеносной системы — артериальное давление. Оно колеблется от 90 мм рт.ст. до 139 мм рт.ст. для систолического и 60-90 — для диастолического.

1.4

Круги кровообращения

Все сосуды образуют два замкнутых круга: большой и малый. Это обеспечивает бесперебойное одновременное снабжение кислородом организма, а также газообмен в легких. Каждый круг кровообращения начинается из сердца и там же заканчивается.

Круги кровообращения

Малый идет от правого желудочка по легочной артерии в легкие. Здесь она несколько раз ветвится. Кровеносные сосуды образуют густую капиллярную сеть вокруг всех бронхов и альвеол. Через них происходит газообмен. Кровь, богатая углекислым газом, отдает его в полость альвеол, а взамен получает кислород. После чего капилляры последовательно собираются в две вены и идут в левое предсердие. Малый круг кровообращения заканчивается. Кровь идет в левый желудочек.

Большой круг кровообращения начинается от левого желудочка. Во время систолы кровь идет в аорту, от которой ответвляются множество сосудов (артерий). Они делятся несколько раз, пока не превратятся в капилляры, снабжающие кровью весь организм — от кожи до нервной системы. Здесь происходит обмен газов и питательных веществ. После чего кровь последовательно собирается в две крупные вены, идущие в правое предсердие. Большой круг заканчивается. Кровь из правого предсердия попадает в левый желудочек, и все начинается заново.

2

Функции

Сердечно-сосудистая система выполняет в организме ряд важнейших функций:

  • Питание и снабжение кислородом.
  • Поддержание гомеостаза (постоянства условий внутри всего организма).
  • Защита.

Снабжение кислородом и питательными веществами заключается в следующем: кровь и ее компоненты (эритроциты, белки и плазма) доставляют кислород, углеводы, жиры, витамины и микроэлементы до любой клетки. При этом из нее они забирают углекислый газ и вредные отходы (продуты жизнедеятельности).

Постоянные условия в организме обеспечиваются самой кровью и ее компонентами (эритроциты, плазма и белки). Они не только выступают переносчиками, но и регулируют важнейшие показатели гомеостаза: ph, температуру тела, уровень влажности, количество воды в клетках и межклеточном пространстве.

Непосредственную защитную функцию играют лимфоциты. Эти клетки способны обезвреживать и уничтожать чужеродную материю (микроорганизмы и органические вещества). Сердечно-сосудистая система обеспечивает их быструю доставку в любой уголок организма.

3

Особенности системы в разные периоды жизни

Во время внутриутробного развития сердечно-сосудистая система имеет ряд особенностей.

  • Установлено сообщение между предсердиями («овальное окно»). Оно обеспечивает прямой переход крови между ними.
  • Малый круг кровообращения не функционирует.
  • Кровь из легочной вены переходит в аорту по специальному открытому протоку (Баталов проток).

Кровь обогащается кислородом и питательными веществами в плаценте. Оттуда по пупочной вене она идет в полость живота через одноименное отверстие. Затем сосуд впадает в печеночную вену. Откуда, проходя через орган, кровь поступает в нижнюю полую вену, к оторая впадает в правое предсердие. Оттуда почти вся кровь идет в левое. Только ее малая часть выбрасывается в правый желудочек, а затем в легочную вену. Кровь от органов собирается в пупочные артерии, которые идут к плаценте. Здесь она вновь обогащается кислородом, получает питательные вещества. При этом углекислый газ и продукты обмена малыша переходят в кровь матери, организм который их и выводит.

Сердечно-сосудистая система у детей после рождения претерпевает ряд изменений. Баталов проток и овальное отверстие зарастают. Пупочные сосуды запустевают и превращаются в круглую связку печени. Начинает функционировать малый круг кровообращения. К 5-7 дням (максимум — 14) сердечно-сосудистая система приобретает те черты, которые сохраняются у человека на протяжении всей жизни. Изменяется только количество циркулирующей крови в разные периоды. Вначале оно увеличивается и к 25-27 годам достигает максимума. Только после 40 лет объем крови начинает несколько снижаться, и после 60-65 лет остается в пределах 6-7% от массы тела.

В некоторые периоды жизни количество циркулирующей крови увеличивается или уменьшается временно. Так, при беременности объем плазмы становится больше исходного на 10%. После родов он снижается до нормы за 3-4 недели. Во время голодания и непредвиденных физических нагрузок количество плазмы становится меньше на 5-7%.

vashflebolog.com

Сердечно-сосудистая система человека | Fit-baza.com

Строение сердечно – сосудистой системы и ее функции – это ключевые знания, которые необходимы персональному тренеру для построения грамотного тренировочного процесса для подопечных, на основе адекватных их уровню подготовки нагрузок. Прежде, чем приступить к построению тренировочных программ, необходимо понять принцип работы этой системы, каким образом кровь перекачивается по организму, какими путями это происходит и что влияет на пропускную способность ее сосудов.

Введение

Сердечно – сосудистая система нужна организму для переноса питательных веществ и компонентов, а также для ликвидации продуктов обмена из тканей, поддержания постоянства внутренней среды организма, оптимальной для его функционирования. Сердце является ее основным компонентом, который выступает в роли насоса, перекачивающего кровь по организму. В то же время сердце является лишь частью целостной системы кровообращения организма, которая сначала гонит кровь от сердца к органам, а затем от них обратно к сердцу. Также мы рассмотрим отдельно артериальную и отдельно венозную системы кровообращения человека.

Строение и функции сердца человека

Сердце представляет собой своеобразный насос, состоящий из двух желудочков, которые взаимосвязаны между собой и в то же время независимы друг от друга. Правый желудочек гонит кровь через легкие, левый желудочек гонит ее через весь остальной организм. Каждая половина сердца имеет две камеры: предсердие и желудочек. Их вы можете видеть на изображении ниже. Правое и левое предсердия выступают в роли резервуаров, из которых кровь попадает непосредственно в желудочки. Оба желудочка в момент сокращения сердца выталкивают кровь и прогоняют ее по системе легочных, а также периферических сосудов.

Строение сердца человека: 1-легочный ствол; 2-клапан легочной артерии; 3-верхняя полая вена; 4-правая легочная артерия; 5-правая легочная вена; 6-правое предсердие; 7-трикуспидальный клапан; 8-правый желудочек; 9-нижняя полая вена; 10-нисходящая аорта; 11-дуга аорты; 12-левая легочная артерия; 13-левая легочная вена; 14-левое предсердие; 15-аортальный клапан; 16-митральный клапан; 17-левый желудочек; 18-межжелудочковая перегородка.

Строение и функции кровеносной системы

Кровообращение всего тела, как центральное (сердце и легкие), так и периферическое (все остальное тело) формирует целостную закрытую систему, разделенную на два контура. Первый контур прогоняет кровь от сердца и носит название артериальной системы кровообращения, второй контур возвращает кровь к сердцу и носит название венозной системы кровообращения. Кровь, возвращающаяся от периферии к сердцу, изначально попадает к правому предсердию посредством верхней и нижней полых вен. Из правого предсердия кровь перетекает в правый желудочек, и посредством легочной артерии поступает к легким. После того, как в легких произойдет обмен кислорода с углекислым газом, кровь через легочные вены возвращается к сердцу, попадая сначала в левое предсердие, после в левый желудочек и затем только по новой в артериальную систему кровоснабжения.

Строение кровеносной системы человека: 1-верхняя полая вена; 2-сосуды идущие к легким; 3-аорта; 4-нижняя полая вена; 5-печеночная вена; 6-воротная вена; 7-легочная вена; 8-верхняя полая вена; 9-нижняя полая вена; 10-сосуды внутренних органов; 11-сосуды конечностей; 12-сосуды головы; 13-легочная артерия; 14-сердце.

I-малый круг кровообращения; II-большой круг кровообращения; III-сосуды идущие к голове и рукам; IV-сосуды идущие к внутренним органам; V-сосуды идущие к ногам

Строение и функции артериальной системы человека

Функции артерий заключаются в транспортировке крови, которая выбрасывается сердцем при его сокращении. Поскольку выброс этот происходит под довольно высоким давлением, природа снабдила артерии прочными и упругими мышечными стенками. Более мелкие артерии, которые называются артериолами, предназначены для контроля объема циркуляции кровообращения и выполняют роль сосудов, по которым кровь попадает непосредственно в ткани. Артериолы имеют ключевое значение в регуляции кровотока в капиллярах. Они также защищены упругими мышечными стенками, которые дают возможность сосудам либо по мере надобности перекрывать их просвет, либо значительно расширять его. Это дает возможность изменять и контролировать кровообращение внутри капиллярной системы в зависимости от потребностей конкретных тканей.

Строение артериальной системы человека: 1-плечеголовый ствол; 2-подключичная артерия; 3-дуга аорты; 4-подмышечная артерия; 5-внутренняя грудная артерия; 6-нисходящий отдел аорты; 7-внутренняя грудная артерия; 8-глубокая плечевая артерия; 9-лучевая возвратная артерия; 10-верхняя надчревная артерия; 11-нисходящий отдел аорты; 12-нижняя надчревная артерия; 13-межкостные артерии; 14-лучевая артерия; 15-локтевая артерия; 16-ладонная запястная дуга; 17-тыльная запястная дуга; 18-ладонные дуги; 19-пальцевые артерии; 20-нисходящая ветвь огибающей артерии; 21-нисходящая коленная артерия; 22-верхние коленные артерии; 23-нижние коленные артерии; 24-малоберцовая артерия; 25-задняя большеберцовая артерия; 26-большая большеберцовая артерия; 27-малоберцовая артерия; 28-артериальная дуга стопы; 29-плюсневая артерия; 30-передняя мозговая артерия; 31-средняя мозговая артерия; 32-задняя мозговая артерия; 33-базилярная артерия; 34-наружная сонная артерия; 35-внутренняя сонная артерия; 36-позвоночные артерии; 37-общие сонные артерии; 38-легочная вена; 39-сердце; 40-межреберные артерии; 41-чревный ствол; 42-желудочные артерии; 43-селезеночная артерия; 44-общая печеночная артерия; 45-верхняя брыжеечная артерия; 46-почечная артерия; 47-нижняя брыжеечная артерия; 48-внутренняя семенная артерия; 49-общая подвздошная артерия; 50-внутренняя подвздошная артерия; 51-наружная подвздошная артерия; 52-огибающие артерии; 53-общая бедренная артерия; 54-прободающие ветви; 55-глубокая артерия бедра; 56-поверхностная бедренная артерия; 57-подколенная артерия; 58-тыльные плюсневые артерии; 59-тыльные пальцевые артерии.

Строение и функции венозной системы человека

Предназначение венул и вен заключается в том, чтобы по ним возвращать кровь обратно к сердцу. Из крохотных капилляров кровь поступает в мелкие венулы, а оттуда в более крупные вены. Поскольку давление в венозной системе значительно ниже, чем в артериальной, стенки сосудов здесь значительно тоньше. Тем не менее, стенки вен также окружены упругой мышечной тканью, которая по аналогии с артериями позволяет им или сильно сужаться, полностью перекрывая просвет, либо сильно расширяться, выступая в таком случае резервуаром для крови. Особенностью некоторых вен, к примеру в нижних конечностях является наличие односторонних клапанов, задача которых обеспечивать нормальный возврат крови к сердцу, предотвращая тем самым ее отток под воздействием гравитации, когда тело находится в вертикальном положении.

Строение венозной системы человека: 1-подключичная вена; 2-внутренняя грудная вена; 3-подмышечная вена; 4-латеральная вена руки; 5-брахиальные вены; 6-межреберные вены; 7-медиальная вена руки; 8-срединная локтевая вена; 9-грудинонадчревная вена; 10-латеральная вена руки; 11-локтевая вена; 12-медиальная вена предплечья; 13-надчревная нижняя вена; 14-глубокая ладонная дуга; 15-поверхностная ладонная дуга; 16-ладонные пальцевые вены; 17-сигмовидная пазуха; 18-наружная яремная вена; 19-внутренняя яремная вена; 20-нижняя щитовидная вена; 21-легочные артерии; 22-сердце; 23-нижняя полая вена; 24-печеночные вены; 25-почечные вены; 26-брюшная полая вена; 27-семенная вена; 28-общая подвздошная вена; 29-прободающие ветви; 30-наружная подвздошная вена; 31-внутренняя подвздошная вена; 32-наружная половая вена; 33-глубокая вена бедра; 34-большая вена ноги; 35-бедренная вена; 36-добавочная вена ноги; 37-верхние коленные вены; 38-подколенная вена; 39-нижние коленные вены; 40-большая вена ноги; 41-малая вена ноги; 42-передняя/задняя большеберцовая вена; 43-глубокая подошвенная вена; 44-тыльная венозная арка; 45-тыльные пястные вены.

Строение и функции системы мелких капилляров

Функции капилляров заключаются в реализации обмена кислорода, жидкостей, различных питательных веществ, электролитов, гормонов и прочих жизненно важных компонентов между кровью и тканями тела. Поступление питательных веществ к тканям происходит за счет того, что стенки этих сосудов обладают очень маленькой толщиной. Тонкие стенки позволяют питательным веществам проникать к тканям и обеспечивать их всеми необходимыми компонентами.

Строение сосудов микроциркуляции: 1-артерии; 2-артериолы; 3-вены; 4-венулы; 5-капилляры; 6-клетки ткани

Работа кровеносной системы

Движение крови по всему организму зависит от пропускной способности сосудов, точнее от их сопротивления. Чем это сопротивление ниже, тем сильнее возрастает кровоток, в то же время, чем сопротивление выше, тем кровоток становится слабее. Само по себе сопротивление зависит от величины просвета сосудов артериальной системы кровообращения. Общее сопротивление всех сосудов системы кровообращения называется общим периферическим сопротивлением. Если в организме в короткий промежуток времени происходит сокращение просвета сосудов, общее периферическое сопротивление повышается, а при расширении просвета сосудов оно понижается.

Как расширение, так и сокращение сосудов всей кровеносной системы происходит под воздействием множества различных факторов, таких как интенсивность тренировки, уровень стимуляции нервной системы, активность обменных процессов в конкретных группах мышц, течение процессов теплообмена с внешней средой и не только. В процессе тренировки, возбуждение нервной системы приводит к расширению сосудов и повышению кровотока. В то же время, самое значительное усиление кровообращения в мышцах – это прежде всего результат протекания обменных и электролитических реакций в тканях мышц под воздействием как аэробных, так и анаэробных физических нагрузок. Это в том числе и повышение температуры тела и рост концентрации углекислого газа. Все эти факторы способствуют расширению сосудов.

Одновременно с этим, кровоток в других органах и частях тела, которые не задействованы в выполнении физической нагрузки понижается в следствие сокращения артериол. Этот фактор наряду с сужением крупных сосудов венозной системы кровообращения способствует увеличению объема крови, которая участвует в кровоснабжении вовлеченных в работу мышц. Тот же эффект наблюдается и в ходе выполнения силовых нагрузок с малыми весами, но с большим количеством повторений. Реакцию организма в данном случае можно приравнять к аэробной нагрузке. В то же время, при выполнении силовой работы с большими весами, сопротивление кровотоку в рабочих мышцах повышается.

Заключение

Мы рассмотрели строение и функции кровеносной системы человека. Как теперь нам стало понятно, она нужна для перекачивания крови по организму при помощи сердца. Артериальная система гонит кровь от сердца, венозная система возвращает кровь обратно к нему. С точки зрения физической активности, подвести итог можно следующим образом. Кровоток в системе кровообращения зависит от степени сопротивления кровеносных сосудов. Когда сопротивление сосудов снижается, кровоток возрастает, а при увеличении сопротивления – понижается. Сокращение или расширение кровеносных сосудов, которые и определяют степень сопротивления, зависят от таких факторов, как тип упражнения, реакция нервной системы и течение обменных процессов.

fit-baza.com

Глава 20 функции сосудистой системы

Э. Вицлеб

 

Общие принципы строения и функционирования сосудистой системы. Сердечно–сосудистая система состоит из сердца и сосудов–артерий, капилляров и вен.

Транспортная функция сердечно–сосудистой системы заключается в том, что сердце (насос) обеспечивает продвижение крови (транспортируемой среды) по замкнутой цепи сосудов (эластических трубок).

Основное назначение постоянной циркуляции крови в организме заключается в доставке и удалении различных веществ. Кровь приносит ко всем клеткам субстраты, необходимые для их нормального функционирования (например О2 и питательные вещества), и удаляет продукты их жизнедеятельности (СO2 и др.). Все эти вещества поступают в кровоток и выходят из него не непосредственно, а через интерстициальную (межклеточную) жидкость. Сердечно–сосудистая система выполняет и многие другие функции. Все эти функции обсуждаются в различных разделах настоящей книги.

Сердечно–сосудистая система человека состоит из двух последовательно соединенных отделов.

1. Большой (системный) круг кровообращения. Насосом для этого отдела служит левое сердце.

2. Малый (легочный) круг кровообращения. Движение крови в этом отделе обеспечивается правым сердцем.

Вследствие такого последовательного соединения обоих отделов (рис. 20.1) выбросы правого и левого желудочков должны быть строго одинаковыми (возможны лишь кратковременные отклонения).

Большой круг кровообращения начинается с левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, и в результате кровоток распределяется по нескольким параллельным региональным сосудистым сетям, каждая из которых снабжает кровью отдельный орган–сердце, головной мозг, печень, почки, мышцы, кожу и т.д. Артерии делятся дихотомически, поэтому по мере уменьшения диаметра отдельных сосудов общее их число возрастает. В результате разветвления мельчайших артерий (артериол) образуется капиллярная сеть – густое переплетение мелких сосудов с очень тонкими стенками. Общая площадь поверхности всех капилляров в организме огромна (около 1000 м2). Именно в капиллярах происходят процессы, обеспечивающие специфические функции системы кровообращения, т.е. двусторонний обмен различными веществами между кровью и клетками. При слиянии капилляров образуются венулы; последние собираются в вены. По мере такого объединения число сосудов постепенно уменьшается, а диаметр их возрастает; в конечном счете к правому предсердию подходят только две вены–верхняя полая и нижняя полая. Этому общему правилу строения венозного русла не подчиняется кровообращение в некоторых органах брюшной полости: кровь, оттекающая от капиллярных сетей брыжеечных и селезеночных сосудов (т. е. от кишечника и селезенки), в печени проходит еще через одну систему капилляров и лишь затем поступает к сердцу (рис. 20.1). Это русло называется портальным кровообращением. В общем же по артериям кровь поступает к органам, а по венам оттекает от них.

Малый круг кровообращения начинается с правого желудочка, выбрасывающего кровь в легочный ствол. Затем кровь поступает в сосудистую систему легких, имеющую в общих чертах то же строение, что и большой круг кровообращения. Кровь по четырем крупным легочным венам оттекает к левому предсердию, а затем поступает в левый желудочек. В результате оба круга кровообращения замыкаются.

Между двумя кругами кровообращения существует принципиальное функциональное различие. Оно заключается в том, что объем крови, выбрасываемый за определенное время в большой круг, должен быть распределен по всем органам и тканям; потребности же разных органов в кровоснабжении различны даже в состоянии покоя и вдобавок постоянно изменяются в зависимости от деятельности органов. Все эти изменения контролируются, и кровоснабжение органов регулируется целым рядом управляющих механизмов. Что касается сосудов легких, через которые проходит то же количество

 

 

Рис. 20.1. Схема сердечно–сосудистой системы. Сосуды, содержащие насыщенную кислородом кровь, закрашены красным, а сосуды, содержащие частично дезоксигенированную кровь,–розовым. Малый и большой круги кровообращения образуют замкнутую цепь. Лимфатическая система (показана серым) осуществляет дополнительную дренажную функцию

 

крови, то они предъявляют к правому сердцу относительно постоянные требования и выполняют в основном функции газообмена и теплоотдачи. Поэтому для регуляции легочного кровотока требуется менее сложная система. Кроме системы кровеносных сосудов существует система лимфатических сосудов, собирающих жидкость и белки из межклеточного пространства и переносящих эти вещества в кровеносную систему (рис. 20.1).

 

studfile.net

сосудистая или кровеносная система человека. Анатомия

Сердечно-сосудистая система включает в себя: сердце, кровеносные сосуды, и примерно 5 литров крови, которую кровеносные сосуды транспортируют. Ответственная за транспортировку кислорода, питательных веществ, гормонов и продуктов клеточных отходов по всему телу, сердечно-сосудистая система работает благодаря самому трудолюбивому органу тела — сердцу, которое размером всего лишь с кулак. Даже в состоянии покоя, в среднем, сердце легко перекачивает 5 литров крови по всему телу каждую минуту … [Читайте ниже]

[Начало сверху] …

Сердце

Сердце является мышечным насосным органом, расположенным медиально в грудном отделе. Нижний конец сердца поворачивается влево, так что около чуть более половины сердца находится на левой стороне тела, а остальная часть — справа. В верхней части сердца, известной как основание сердца, соединяются большие кровеносные сосуды тела: аорта, полая вена, легочный ствол и легочные вены.
Есть 2 основных круга кровообращения в человеческом теле: Малый (легочный) циркуляционный круг и Большой круг циркуляции.

Малый круг кровообращения транспортирует венозную кровь из правой части сердца к легким, где кровь насыщается кислородом и возвращается в левую сторону сердца. Насосными камерами сердца, которые поддерживают легочный контур циркуляции являются: правое предсердие и правый желудочек.

Большой круг кровообращения несет высоко насыщенную кислородом кровь от левой стороны сердца ко всем тканям организма (за исключением сердца и легких). Большой круг кровообращения удаляет отходы из тканей организма и выводит венозную кровь с правой стороны сердца. Левое предсердие и левый желудочек сердца являются насосными камерами для Большого контура циркуляции.

Кровеносные сосуды

Кровеносные сосуды — магистрали организма, которые позволяют крови быстро и эффективно поступать от сердца к каждой области тела и обратно. Размер кровеносных сосудов соответствует количеству крови, которая проходит через сосуд. Все кровеносные сосуды содержат полую зону, называемую просвет, через который кровь может течь в одном направлении. Область вокруг просвета является стенкой сосуда, которая может быть тонкой в случае капилляров или очень толстой в случае артерий.
Все кровеносные сосуды выстланы тонким слоем простого плоского эпителия, известного как эндотелий, который держит клетки крови внутри кровеносных сосудов и предотвращает сгустки. Эндотелий выстилает всю кровеносную систему, все пути внутренней части сердца, где он называется — эндокард.

Типы кровеносных сосудов

Существуют три основных типа кровеносных сосудов: артерии, вены и капилляры. Кровеносные сосуды часто называют так, в какой-либо области тела они находятся, через которую несут кровь или от соседних им структур. Например, брахиоцефальная артерия несет кровь в плечевой (руку) и предплечевой регионы. Одна из её ветвей, подключичная артерия, проходит под ключицей: отсюда и название подключичной артерии. Подключичная артерия проходит в области подмышечной впадины, где она становится известной как подмышечная артерия.

Артерии и артериолы: артерии — кровеносные сосуды, которые несут кровь от сердца. Кровь переносится по артериям, как правило, весьма насыщенная кислородом, покинув легкие, по пути к тканям организма. Артерии лёгочного ствола и артерии малого круга кровообращения являются исключением из этого правила — эти артерии несут венозную кровь из сердца в легкие, чтобы насытить её кислородом.

Артерии

Артерии сталкиваются с высоким уровнем артериального давления, поскольку они несут кровь из сердца с большой силой. Для того, чтобы противостоять этому давлению, стенки артерий толще, более упругие и более мускулистые, чем у других сосудов. Наиболее крупные артерии тела содержат высокий процент эластичной ткани, что позволяет им растягиваться и вмещать давление сердца.

Более мелкие артерии — более мускулистые по структуре своих стенок. Гладкие мышцы стенок артерий расширяют канал, чтобы регулировать поток крови, проходящий через их просвет. Таким образом, организм контролирует, какой поток крови направлять к различным частям тела при различных обстоятельствах. Регулирование потока крови также влияет на кровяное давление, поскольку меньшие артерии дают меньшую площадь сечения, следовательно, повышают давление крови на стенки артерий.

Артериолы

Это более мелкие артерии, которые отходят от концов основных артерий и несут кровь к капиллярам. Они сталкиваются с гораздо более низким давлением крови, чем артерии из-за их большего числа, уменьшенного объема крови, а также расстояния от сердца. Таким образом, стенки артериол гораздо тоньше, чем у артерий. Артериолы, как артерии, способны использовать гладкие мышцы, чтобы контролировать свои диафрагмы и регулировать поток крови и кровяное давление.

Капилляры

Они являются самыми маленькими и тончайшими кровеносными сосудами в организме и наиболее распространенными. Их можно найти на протяжении почти всех тканей тела организма. Капилляры подключаются к артериолам с одной и венулам с другой стороны.

Капилляры проносят кровь очень близко к клеткам тканей организма с целью обмена газов, питательных веществ и продуктов жизнедеятельности. Стенки капилляров состоят только из тонкого слоя эндотелия, так что это минимально возможный размер сосудов. Эндотелий действует как фильтр, чтобы держать клетки крови внутри сосудов позволяя при этом жидкости, растворенным газам, а также другим химическим веществам, диффундировать вдоль их градиентов концентрации из тканей.

Прекапиллярными сфинктерами являются полосы гладких мышц, найденных на артериольных концах капилляров. Эти сфинктеры регулируют кровоток в капиллярах. Поскольку существует ограниченный запас крови, а не все ткани имеют одинаковую энергию и требования к кислороду, прекапиллярные сфинктеры уменьшают приток крови к неактивным тканям и обеспечивают свободный поток в активных тканях.

Вены и венулы

Вены и венулы являются в большинстве своём обратными сосудами тела и действуют для обеспечения возвращения крови артериям. Поскольку артерии, артериолы и капилляры поглощают большую часть силы сердечных сокращений, вены и венулы подвергаются очень низкому давлению крови. Такое отсутствие давления позволяет стенкам вен быть гораздо тоньше, менее эластичными, и менее мускулистыми, чем стенки артерий.

Вены работают за счёт силы тяжести, инерции и силы скелетных мышц, чтобы оттеснить кровь к сердцу. Для того, чтобы облегчить движение крови, некоторые вены содержат много односторонних клапанов, которые препятствуют току крови от сердца. Скелетные мышцы тела также сжимают вены и помогают толкать кровь через клапаны ближе к сердцу.


Когда мышца расслабляется, клапан улавливает кровь, пока другой толкает кровь ближе к сердцу. Венулы подобны артериолам, поскольку они представляют собой небольшие сосуды, которые соединяют капилляры, но в отличие от артериол, венулы подключаются к венам вместо артерий. Венулы забирают кровь из множества капилляров и помещают её в более крупные вены для транспортировки обратно к сердцу.

Коронарное кровообращение

Сердце имеет свой собственный набор кровеносных сосудов, которые обеспечивают миокард кислородом и питательными веществами, необходимой концентрации, чтобы качать кровь по всему телу. Левая и правая коронарные артерии ответвляются от аорты и обеспечивают кровь к левой и правой сторонам от сердца. Коронарным синусом являются вены на задней стороне сердца, которые возвращают венозную кровь из миокарда в полую вену.

Кровообращение печени

Вены желудка и кишечника выполняют уникальную функцию: вместо того, чтобы нести кровь непосредственно обратно к сердцу, они несут кровь в печень через воротную вену печени. Кровь, прошедши органы пищеварения, богата питательными веществами и другими химическими веществами, поглощаемыми с пищей. Печень удаляет токсины, сохраняет сахар и обрабатывает продукты пищеварения, прежде чем они достигнут других тканей организма. Кровь из печени затем возвращается к сердцу через нижнюю полую вену.

Кровь

В среднем, человеческое тело содержит приблизительно от 4 до 5 литров крови. Выступая в качестве жидко

anatomya.ru

Функции сосудистой системы | Сообщество Вампиров

Функции сосудистой системы

Движение крови в венах

Движение крови в венах обеспечивает наполнение полостей сердца во время диастолы. Ввиду небольшой толщины мышечного слоя стенки вен гораздо более растяжимы, чем стенки артерий, поэтому в венах может скапливаться большое количество крови. Даже если давление в венозной системе повысится всего на несколько миллиметров, объем крови в венах увеличится в 2—3 раза, а при повышении давления в венах на 10 мм рт.ст. вместимость венозной системы возрастет в 6 раз. Вместимость вен может также изменяться при сокращении или расслаблении гладкой мускулатуры венозной стенки. Таким образом, вены (а также сосуды малого круга кровообращения) являются резервуаром крови переменной емкости.

Венозное давление. Давление в венах у человека можно измерить, вводя в поверхностную (обычно локтевую) вену полую иглу и соединяя ее с чувствительным электроманометром. В венах, находящихся вне грудной полости, давление равно 5—9 мм рт.ст.

Для определения венозного давления необходимо, чтобы данная вена располагалась на уровне сердца. Это важно потому, что к величине кровяного давления, например в венах ног в положении стоя, присоединяется гидростатическое давление столба крови, наполняющего вены.

В венах грудной полости, а также в яремных венах давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается (при обычном выдохе оно не поднимается выше 2—5 мм рт.ст.). Ранение вен, лежащих вблизи грудной полости (например, яремных вен), опасно, так как давление в них в момент вдоха является отрицательным. При вдохе возможно поступление атмосферного воздуха в полость вен и развитие воздушной эмболии, т. е. перенос пузырьков воздуха кровью и последующая закупорка ими артериол и капилляров, что может привести к смерти.

Скорость кровотока в венах. Кровяное русло в венозной части шире, чем в артериальной, что по законам гемодинамики должно привести к замедлению тока крови. Скорость тока крови в периферических венах среднего калибра 6—14 см/с, в полых венах достигает 20 см/с.

Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах (градиент давления), т. е. в начале и конце венозной системы. Эта разность, однако, невелика, и потому кровоток в венах определяется рядом добавочных факторов. Одним из них является то, что эндотелий вей (за исключением полых вен, вен воротной системы и мелких венул) образует клапаны, пропускающие кровь только по направлению к сердцу. Скелетные мышцы, сокращаясь, сдавливают вены, что вызывает передвижение крови; обратно кровь не идет вследствие наличия клапанов. Этот механизм перемещения крови в венах называют мышечным насосом.

Таким образом, силами, обеспечивающими перемещение крови по венам, являются градиент давления между мелкими и крупными венами, сокращение скелетных мышц («мышечный насос»), присасывающее действие грудной клетки.

Венный пульс. В мелких и средних венах пульсовые колебания давления крови отсутствуют. В крупных венах вблизи сердца отмечаются пульсовые колебания — венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. Во время систолы этих отделов сердца давление внутри вен повышается и происходят колебания их стенок. Удобнее всего записывать венный пульс яремной вены.

На кривой венного пульса — флебограмме — различают три зубца. Зубец а совпадает с систолой правого предсердия и обусловлен тем, что в момент систолы предсердия устья полых вей зажимаются кольцом мышечных волокон, вследствие чего приток крови из вен в предсердия временно приостанавливается. Во время диастолы предсердий доступ в них крови становится вновь свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется небольшой зубец c. Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца c начинается падение кривой, которое сменяется новым подъемом — зубцом v. Последний обусловлен тем, что к концу систолы желудочков предсердия наполнены кровью, дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v наблюдается падение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.

Время кругооборота крови

Время полного кругооборота крови — это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.

Для измерения времени полного кругооборота крови применяют ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны.

В последние годы скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

Время полного кругооборота крови у человека составляет в среднем 27 систол сердца. При частоте сердечных сокращений 70—80 в минуту кругооборот крови происходит приблизительно за 20—23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 — по большому.

Регуляция движения крови по сосудам

Каждая клетка, ткань и орган нуждаются в кислороде и питательных веществах в количестве, соответствующем их метаболизму, т. е. интенсивности их функции. В связи с этим тканям необходимо поступление строго определенного количества крови, несущей О2 и питательные вещества, в единицу времени. Эта потребность обеспечивается благодаря поддержанию постоянного уровня АД и одновременно непрерывного перераспределения протекающей крови между всеми органами и тканями в соответствии с их потребностями в каждый данный момент.

Механизмы, регулирующие кровообращение, можно подразделить на две категории: 1) центральные, определяющие величину АД и системное кровообращение, и 2) местные, контролирующие величину кровотока через отдельные органы и ткани. Хотя такое разделение является удобным, оно в значительной мере условно, так как процессы местной регуляции осуществляются с участием центральных механизмов, а управление системным кровообращением зависит от деятельности местных регуляторных механизмов.

Постоянство АД сохраняется благодаря непрерывному поддержанию точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудистой системы, которое зависит от тонуса сосудов.

Гладкие мышцы сосудов постоянно, даже после устранения всех внешних нервных и гуморальных регуляторных влияний на сосуды, находятся на исходном уровне сокращения. Это так называемый базальный тонус. Возникновение его обусловлено тем, что в некоторых участках гладкой мускулатуры сосудистой стенки имеются очаги автоматии, генерирующие ритмические импульсы. Распространение этих импульсов на остальные гладкие мышечные клетки вызывает их возбуждение и создает базальный тонус. Кроме того, гладкие мышцы сосудистых стенок находятся под влиянием постоянной тонической импульсации, поступающей по волокнам симпатических нервов. Симпатические влияния формируются в сосудо-двигательном центре и поддерживают определенную степень сокращения гладкой мускулатуры сосудов.

Иннервация сосудов

Сужение артерий и артериол, снабженных преимущественно симпатическими нервами (вазоконстрикция) было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.

Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна, проходящие в составе внутренностного нерва (п. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicus сосуды желудка и тонкой кишки суживаются.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.

Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.

Сосудорасширяющие эффекты (вазодилатация) впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздражение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расширение сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрикторов, и вазодилататоры. При этом активация α-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация β-адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что β-адренорецепторы обнаружены не во всех органах.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна.

Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней проводимостью.

Согласно другой точке зрения, расширение сосудов кожи при раздражении задних корешков происходит вследствие того, что в рецепторных нервных окончаниях образуются ацетилхолин и гистамин, которые диффундируют по тканям и расширяют близлежащие сосуды.

Сосудодвигательный центр

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перерезать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

Рефлекторная регуляция сосудистого тонуса

Как отмечалось, артерии и артериолы постоянно находятся в состоянии сужения, в значительной мере определяемого тонической активностью сосудодвигательного центра. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от периферических рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение.

По классификации В. Н. Черниговского, рефлекторные изменения тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы.

Собственные сосудистые рефлексы. Вызываются сигналами от рецепторов самих сосудов. Особенно важное физиологическое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наружную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон.

Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва. Ционом и Людвигом этот нерв функционально был обозначен как депрессор. Электрическое раздражение центрального конца нерва обусловливает падение АД вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блуждающие нервы, то раздражение аортального нерва вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.

В рефлексогенной зоне сонного синуса (каротидный синус, sinus caroticus) расположены рецепторы, от которых идут центростремительные нервные волокна, образующие синокаротидный нерв, или нерв Геринга. Этот нерв вступает в мозг в составе языкоглоточного нерва. При введении в изолированный каротидный синус крови через канюлю под давлением можно наблюдать падение АД в сосудах тела (рис. 7.22). Понижение системного АД обусловлено тем, что растяжение стенки сонной артерии возбуждает рецепторы каротидного синуса, рефлекторно понижает тонус сосудосуживающего центра и повышает тонус ядер блуждающих нервов.

Рецепторы сосудистых рефлексогенных зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прессорецепторами, или барорецепторами. Если перерезать синокаротидные и аортальные нервы с обеих сторон, возникает гипертензия, т. е. устойчивое повышение АД, достигающее в сонной артерии собаки 200—250 мм рт.ст. вместо 100—120 мм рт.ст. в норме.

Понижение АД вследствие, например, уменьшения объема крови в организме (при кровопотерях), о

vampirecommunity.ru

Комментировать

Ваш адрес email не будет опубликован. Обязательные поля помечены *