Значение анатомии цнс: Нервная система человека. Классификация, органы и функции

Нервная система человека. Классификация, органы и функции

Человеческий организм — многоступенчатая структура, каждый орган и система которой тесно взаимосвязаны друг с другом и с окружающей средой. А чтобы эта связь не прерывалась ни на доли секунды, предусмотрена нервная система — сложнейшая сеть, пронизывающая всё тело человека и отвечающая за саморегуляцию и способность адекватно реагировать на внешние и внутренние раздражители. Благодаря слаженной работе нервной системы человек может подстраиваться под факторы внешнего мира: любое, даже незначительное, изменение в окружающей среде заставляет нервные клетки передавать сотни импульсов с невероятно высокой скоростью, чтобы организм мог моментально адаптироваться к новым для себя условиям. Аналогичным образом работает и внутренняя саморегуляция, при которой деятельность клеток координируется в соответствии с текущими потребностями.

Функции нервной системы затрагивают наиважнейшие процессы жизнедеятельности, без которых немыслимо нормальное существование организма. К ним относятся:

  • регуляция работы внутренних органов в соответствии с внешними и внутренними импульсами;
  • координация всех единиц организма, начиная с мельчайших клеток и заканчивая системами органов;
  • гармоничное взаимодействие человека с окружающей средой;
  • основа высших психофизиологических процессов, свойственных человеку.

Как устроен этот сложный механизм? Какими клетками, тканями и органами представлена нервная система человека и за что отвечает каждый из её отделов? Краткий экскурс в основы анатомии и физиологии человеческого тела поможет найти ответы на эти вопросы.

Содержание

Организация нервной системы человека

Нервные клетки охватывают весь организм целиком, формируя разветвлённую сеть волокон и окончаний. Эта система, с одной стороны, объединяет каждую клеточку организма, заставляя работать в одном направлении, а с другой — интегрирует конкретного человека в окружающую среду, уравновешивая его потребности с внешними факторами. Нервная система обеспечивает нормальные процессы пищеварения, дыхания, кровообращения, формирования иммунитета, метаболизма и т. д. — словом, всё то, без чего немыслима нормальная жизнедеятельность.

нервная система

Эффективность нервной системы зависит от правильного формирования рефлекса — ответной реакции организма на раздражение. Любое воздействие, будь то внешние изменения или внутренняя разбалансировка, запускает цепочку импульсов, которые моментально влияют на организм, а он, в свою очередь, формирует ответную реакцию. Таким образом нервная система человека формирует единство тканей, органов и систем человеческого тела друг с другом и с окружающим миром.

Вся нервная система состоит из миллионов нервных клеток — нейронов, или нейроцитов, каждый из которых имеет тело и несколько отростков.

Классификация отростков нейрона зависит от того, какую функцию он выполняет:

  • аксон отправляет нервный импульс от тела нейрона в другую нервную клетку либо же конечную цель цепочки — ткань или орган, который должен совершить определённое действие;
  • дендрит принимает отправленный импульс и приводит его к телу нейрона.

Благодаря тому, что каждая нервная клетка поляризована, цепочка нервных импульсов никогда не меняет направление, попадая в нужное русло. Таким образом продвигается каждый нервный импульс, инициируя работу мышц, внутренних органов и систем.

Разновидности нервных клеток

Прежде чем рассматривать нервную систему в комплексе, необходимо разобраться, из каких функциональных единиц она состоит. В состав НС входят:

  1. Чувствительные нейроны. Расположены в нервных узлах, которые получают информацию непосредственно от рецепторов.
  2. Вставочные нейроны — промежуточное звено, благодаря которому полученный импульс передаётся от чувствительных нейронов далее по цепочке.
  3. Двигательные нейроны. Выступают инициаторами ответной реакции на раздражитель, передавая сигнал от мозга к мышцам или железам, которые в норме должны выполнять возложенную на них функцию.
строение нейронов

Именно по такой схеме строится любая ответная реакция организма человека на внешний или внутренний сигнал-раздражитель, который выступает толчком для конкретного действия. Как правило, прохождение нервного импульса занимает считанные доли секунды, если же это время затягивается или цепочка прерывается, это свидетельствует о наличии патологии нервной системы и требует серьёзной диагностики.

Строение и типы нервной системы: структурная классификация

Чтобы упростить структуру нервной системы, в медицине существует несколько вариантов классификаций в зависимости от строения и выполняемых функций. Так, анатомически нервную систему человека можно разделить на 2 обширные группы:

  • центральную (ЦНС), образованную головным и спинным мозгом;
  • периферическую (ПНС), представленную нервными узлами, окончаниями и непосредственно нервами.

Основа этой классификации предельно проста: центральная нервная система является своего рода связующим звеном, в котором осуществляется анализ поступившего импульса и дальнейшая регуляция деятельности органов и систем. А ПНС служит для транспортировки поступившего сигнала от рецепторов к ЦНС и последующего активатора, но уже от ЦНС к клеткам и тканям, которые будут выполнять конкретное действие.

Центральная нервная система

ЦНС является ключевой составляющей нервной системы, ведь именно здесь формируются основные рефлексы. Она состоит из спинного и головного мозга, каждый из которых надёжно защищён от внешнего воздействия костными структурами. Столь продуманная защита необходима, поскольку каждый отдел ЦНС выполняет жизненно важные функции, без которых невозможно поддержание здоровья.

Спинной мозг

Эта структура заключена внутри позвоночного столба. Она отвечает за простейшие рефлексы и непроизвольные реакции организма на раздражитель.

спинной мозг

Кроме того, нейроны спинного мозга координируют деятельность мышечной ткани, регулирующей защитные механизмы. Например, почувствовав экстремально горячую температуру, человек непроизвольно одёргивает ладонь, защищаясь тем самым от термического ожога. Это и есть типичная реакция, контролируемая спинным мозгом.

Головной мозг

Головной мозг человека состоит из нескольких отделов, каждый из которых выполняет ряд физиологических и психологических функций:

  1. Продолговатый мозг ответственен за жизненно важные функции организма — пищеварение, дыхание, движение крови по сосудам и т. д. Кроме того, здесь располагается ядро блуждающего нерва, который регулирует вегетативный баланс и психоэмоциональную реакцию. Если ядро блуждающего нерва посылает активные импульсы, жизненный тонус человека понижается, он становится апатичным, меланхоличным и депрессивным. Если же активность импульсов, исходящих из ядра, снижается, психологическое восприятие мира меняется на более активное и позитивное.
  2. Мозжечок регулирует точность и координацию движений.
  3. Средний мозг — главный координатор мышечных рефлексов и тонуса. Кроме того, нейроны, регулируемые этим отделом ЦНС, способствуют адаптации органов чувств к внешним раздражителям (например, аккомодация зрачка в сумерках).
  4. Промежуточный мозг образован таламусом и гипоталамусом. Таламус — важнейший орган-анализатор поступающей информации. В гипоталамусе регулируется эмоциональный фон и метаболические процессы, там расположены центры, отвечающие за ощущение голода, жажды, усталости, терморегуляции, сексуальной активности. Благодаря этому координируются не только физиологические процессы, но и многие привычки человека, например склонность к перееданию, восприятие холода и т. д.
  5. Кора больших полушарий. Кора головного мозга является ключевым звеном психических функций, включая сознание, речь, восприятие информации и последующее её осмысление. Лобная доля регулирует двигательную активность, теменная отвечает за телесные ощущения, височная контролирует слух, речь и другие высшие функции, а затылочная содержит центры зрительного восприятия.
головной мозг

Периферическая нервная система

ПНС обеспечивает взаимосвязь между органами, тканями, клетками и ЦНС. Структурно она представлена следующими морфофункциональными единицами:

  1. Нервными волокнами, которые в зависимости от выполняемых функций бывают двигательными, чувствительными и смешанными. Двигательные нервы передают информацию от ЦНС к мышечным волокнам, чувствительные, наоборот, помогают воспринимать полученную с помощью органов чувств информацию и передавать её к ЦНС, а смешанные в той или иной степени участвуют в обоих процессах.
  2. Нервными окончаниями, которые также бывают двигательными и чувствительными. Их функция ничем не отличается от волоконных структур с единственным нюансом — нервными окончаниями начинается или, наоборот, заканчивается цепочка импульсов от органов к ЦНС и обратно.
  3. Нервными узлами, или ганглиями, — скоплениями нейронов за пределами ЦНС. Спинномозговые ганглии отвечают за передачу информации, полученной из внешней среды, а вегетативные — данные о состоянии и активности внутренних органов и ресурсов организма.

Кроме того, все периферические нервы классифицируют в зависимости от их анатомических особенностей. Исходя из этой характеристики, выделяют 12 пар черепных нервов, которые координируют деятельность головы и шеи, и 31 пару спинномозговых нервов, отвечающих за туловище, верхние и нижние конечности, а также внутренние органы, расположенные в брюшной и грудной полостях.

Черепные нервы берут своё начало от головного мозга. Основу их деятельности составляет восприятие сенсорных импульсов, а также частичное участие в дыхательной, пищеварительной и сердечной деятельности. Более подробно функция каждой пары черепных нервов представлена в таблице.

№ п/п Название Функция
I Обонятельный Отвечает за восприятие различных запахов, передавая нервные импульсы от органа обоняния к соответствующему центру головного мозга.
II Зрительный Регулирует восприятие данных, полученных зрительно, доставляя импульсы от сетчатки глаза.
III Глазодвигательный Координирует движение глазных яблок.
IV Блоковый Наряду с глазодвигательной парой нервов принимает участие в скоординированной подвижности глаз.
V Тройничный Отвечает за сенсорное восприятие лицевой области, а также участвует в акте пережёвывания пищи в ротовой полости.
VI Отводящий Ещё один нерв, регулирующий движения глазных яблок.
VII Лицевой Нерв, координирующий мимические сокращения лицевых мышц. Кроме того, эта пара отвечает ещё и за вкусовое восприятие, передавая сигналы от сосочков языка к мозговому центру.
VIII Преддверно-улитковый Эта пара отвечает за восприятие звуков и умение поддерживать равновесие.
IX Языкоглоточный Регулирует нормальную деятельность глоточных мышц и частично передаёт вкусовые ощущения к мозговому центру.
X Блуждающий Один из самых значимых черепных нервов, от функциональности которого зависит деятельность внутренних органов, расположенных в области шеи, грудной и брюшной стенки. К ним относится глотка, гортань, лёгкие, сердечная мышца и органы пищеварительного тракта.
XI Спинной Отвечает за сокращения мышечных волокон шейного и плечевого отделов.
XII Подъязычный Координирует активность языка и частично формирует речевой навык.

Деятельность спинномозговых нервов классифицируется куда проще — каждая конкретная пара или комплекс пар отвечает за отведённый ему участок туловища с одноимённым названием:

  • шейных — 8 пар,
  • грудных — 12 пар,
  • поясничных и крестцовых — по 5 пар соответственно,
  • копчиковых — 1 пара.

Каждый представитель этой группы относится к смешанным нервам, образованным двумя корешками: чувствительным и двигательным. Именно поэтому спинномозговые нервы могут и воспринимать раздражающее воздействие, передавая импульс по цепочке, и активизировать деятельность в ответ на посыл от ЦНС.

ЦНС

Морфофункциональное деление нервной системы

Существует также функциональная классификация отделов нервной системы, в состав которой входят:

  • Соматическая нервная система, регулирующая функции скелетной мускулатуры. Она контролируется корой головного мозга, поэтому полностью подчинена сознательным решениям человека.
  • Вегетативная нервная система, отвечающая за деятельность внутренних органов. Её центры расположены в стволовой части мозга, а потому сознательно она никак не регулируется.

Кроме того, вегетативная система подразделяется ещё на 2 значимых функциональных отдела:

  • Симпатический. Активизируется при энергозатратах;
  • Парасимпатический. Отвечает за период восстановления организма.
симпатическая нервная система

Соматическая нервная система

Соматика — это отдел нервной системы, который отвечает за доставку моторных и чувствительных импульсов от рецепторов к органам центральной нервной системы и обратно. Большая часть нервных волокон соматической системы сосредоточена в коже, мышечном каркасе и органах, отвечающих за сенсорное восприятие. Именно соматическая нервная система практически на 100 % координирует сознательную часть активности человеческого тела и обработку информации, полученной от рецепторов органов чувств.

Основными элементами соматики являются 2 разновидности нейронов:

  • сенсорные, или афферентные. Регулируют доставку информации к клеткам ЦНС;
  • моторные, или эфферентные. Работают в обратном направлении, транспортируя нервные импульсы от ЦНС к клеткам и тканям.

И те и другие нейроны тянутся от отделов ЦНС прямо к конечной цели импульсов, то есть к мышечным и рецепторным клеткам, причём тело в большинстве случаев располагается непосредственно в центральной части нервной системы, а отростки достигают необходимой локализации.

Помимо сознательной деятельности, соматика включает также часть рефлексов, контролируемых неосознанно. С помощью таких реакций мышечная система приходит в активное состояние, не дожидаясь импульса от головного мозга, что позволяет действовать инстинктивно. Такой процесс возможен в том случае, если пути нервных волокон проходят непосредственно через спинной мозг. Примером подобных действий служит одёргивание руки при ощущении высокой температуры или коленный рефлекс при ударе молоточком по сухожилию.

Вегетативная нервная система

Вегетатика, или автономная нервная система, — отдел, координирующий активность преимущественно внутренних органов. Поскольку основные процессы жизнедеятельности — дыхание, метаболизм, сердечные сокращения, кровоток и т. д. — не подчинены сознанию, вегетативные нервные волокна реагируют преимущественно на изменения, происходящие во внутренней среде организма, оставаясь безучастными к сознательным импульсам. Благодаря этому в организме поддерживаются оптимальные условия для обеспечения энергоресурсами, необходимыми в конкретной ситуации.

вегетативная нервная система

Особенности вегетативной нервной деятельности подразумевают, что основные волокна сосредоточены не только в органах ЦНС, но и в остальных тканях человеческого тела. Многочисленные узлы рассеяны по всему организму, образуя автономную нервную систему вне пределов ЦНС, между мозговыми центрами и органами. Такая сеть может регулировать простейшие функции, однако более сложные механизмы всё же остаются под непосредственным контролем центральной нервной системы.

Ключевая роль вегетатики заключается в поддержании относительно постоянного гомеостаза путём самонастройки активности внутренних органов в зависимости от потребностей организма. Так, вегетативные волокна оптимизируют секрецию гормонов, скорость и интенсивность кровоснабжения тканей, интенсивность и частоту дыхания и сердечных сокращений и другие ключевые механизмы, которые должны реагировать на изменения внешней среды (например, при интенсивной физической нагрузке, повышении температуры или влажности воздуха, атмосферного давления и т. д.). Благодаря этим процессам обеспечиваются компенсаторные и приспособительные реакции, поддерживающие организм в оптимальной форме при любых обстоятельствах. Поскольку бессознательная деятельность внутренних органов может регулироваться в двух направлениях (активация и подавление), вегетатику также можно условно разделить на 2 отдела — парасимпатический и симпатический.

Симпатическая нервная система

Симпатический отдел вегетатики напрямую связан со спинномозговым веществом, расположенным от первого грудного до третьего поясничного позвонка. Именно здесь осуществляется стимуляция деятельности внутренних органов, необходимая во время повышенной энергозатраты — при физических нагрузках, во время стресса, интенсивной работы или эмоциональном потрясении. Такие механизмы позволяют поддержать организм, обеспечив его ресурсами, необходимыми для преодоления неблагоприятных условий.

Под воздействием симпатики учащается дыхание и пульсация сосудов, благодаря чему ткани лучше снабжаются кислородом, из клеток быстрее высвобождается энергия. Благодаря этому человек может активнее трудиться, справляясь с повышенными нагрузками в условиях неблагополучия. Однако эти ресурсы не могут быть бесконечными: рано или поздно количество запасов энергии снижается, и тело уже не может функционировать «на повышенных оборотах» без передышки. Тогда в работу включается парасимпатический отдел вегетатики.

Парасимпатическая нервная система

Парасимпатическая нервная система локализована в среднем мозге и крестцовом отделах позвоночного столба. Она, в отличие от симпатики, ответственна за сохранение и накопление энергетического депо, снижение физической активности и полноценный отдых.

Так, например, парасимпатика замедляет ЧСС во время сна или физического отдыха, когда человек восстанавливает потраченные силы, справляясь с усталостью. Дополнительно в это время активизируются перистальтические процессы, положительным образом сказывающиеся на метаболизме и, как следствие, на восстановлении запасов питательных веществ. Благодаря такой саморегуляции включаются защитные механизмы, особенно важные при критическом уровне переутомления или истощения — тело человека просто-напросто отказывается продолжать работу, требуя время для отдыха и восстановления.

Особенности и отличия симпатической и парасимпатической нервной системы

На первый взгляд может показаться, что симпатический и парасимпатический отделы — антагонисты, однако на самом деле это не так. Оба этих отдела действуют скоординированно и сообща, просто в разных направлениях: если симпатика активизирует работу, то парасимпатика позволяет восстановиться и отдохнуть. Благодаря этому работа внутренних органов всегда в большей или меньшей степени соответствует конкретной ситуации, а организм может подстроиться под любые условия. По сути, обе эти системы составляют основу гомеостаза, сбалансированно регулируя уровни активности человеческого тела.

Большинство внутренних органов имеют и симпатические, и парасимпатические волокна, которые оказывают на них разное влияние. Причём от того, какой из отделов НС превалирует в сложившихся обстоятельствах, зависит состояние органа на текущий момент. На наглядном примере деятельность этих систем можно рассмотреть в таблице ниже.

Орган Парасимпатическое воздействие Симпатическое воздействие
Кровоснабжение головного мозга Сужение сосудов, уменьшение объёма поступающей крови Расширение сосудов, активация кровоснабжения
Периферические артерии и артериолы Сужение просвета, повышение артериального давления и ослабление кровотока Расширение диаметра артериальных сосудов и снижение давления
Частота сердечных сокращений Уменьшение ЧСС Повышение ЧСС
Пищеварительная система Усиление моторики желудочно-кишечного тракта для скорейшего всасывания питательных веществ Замедление перистальтики и, как следствие, метаболизма
Слюнные железы Усиление секреции Ощущение сухости во рту
Надпочечники Подавление эндокринной функции Активация синтеза гормонов
Бронхи Сужение просвета бронхов, более тяжёлое непродуктивное дыхание Расширение бронхов, увеличение объёма вдыхаемого воздуха и продуктивности каждого дыхательного движения
Зрительный анализатор Сужение зрачков Расширение зрачков
Мочевой пузырь Сокращение Расслабление
Потовые железы Снижение потоотделения Усиление активности потовых желёз

Post Scriptum

Неврологические проблемы, связанные с заболеваниями нервной системы человека, являются одними из сложнейших в медицинской практике. Любое повреждение нервных тканей приводит к частичной или полной потере контроля над организмом, наносит огромный ущерб качеству жизни и снижает функциональные возможности человека. Только комплексное и скоординированное действие каждого нейрона всех отделов центральной и периферической НС способно поддерживать организм в оптимальном состоянии, обеспечивать корректную работу каждого органа, адекватно вписываться в окружающие реалии и реагировать на внешние раздражители. Поэтому необходимо внимательно следить за здоровьем собственной нервной системы, а при малейшем подозрении на отклонение срочно принимать соответствующие меры — это один из тех случаев, в которых лучше заняться профилактикой, чем упустить время, пока всё ещё можно исправить без последствий!

Место анатомии среди других наук — Мегаобучалка

И.А. Тишевской

 

Анатомия

Центральной нервной системы

 

Учебное пособие

Челябинск

Издательство ЮУрГУ

УДК 611.8 (075.8)

Тишевской И.А. Анатомия центральной нервной системы: Учебное пособие. – Челябинск: Изд-во ЮУрГУ, 2000.– 131 с.

 

Ил. 81, табл. 2, список лит. – 9 назв.

 

Одобрено учебно-методической комиссией факультета психологии.

 

Рецензенты: Зырянова В.М., Степанов В.А.

 

 

© Издательство ЮУрГУ, 2000 .

Введение

Предмет изучения анатомии ЦНС. Функции ЦНС

 

Нервная система как предмет изучения анатомии

Функции нервной системы

Любой организм от примитивного до самого сложного для своего существования в любых условиях и при разных уровнях активности должен поддерживать на одном уровне гомеостаз – устойчивое неравенство внутренней среды организма с окружающей средой. Это возможно только при упорядоченных потоках веществ, энергии и информации внутрь организма и из него. Для этого организм должен получать и оценивать информацию о состоянии внешней и внутренней среды и, учитывая насущные потребности, строить программы поведения.

Эту функцию выполняет нервная система, являющаяся по словам И.П.Павлова, «невыразимо сложнейшим и тончайшим инструментом сношений, связи многочисленных частей организма между собой и организма как сложнейшей системы с бесконечным числом внешних влияний».

Таким образом, к важнейшим функциям нервной системы относятся:

1. Интегративная функция – управление работой всех органов и систем и обеспечение функционального единства организма. На любое воздействие организм отвечает как единое целое, соизмеряя и соподчиняя потребности и возможности разных органов и систем.

2. Сенсорная функция – получение информации о состоянии внешней и внутренней среды от специальных воспринимающих клеток или окончаний нейронов – рецепторов.

3. Функция отражения, в том числе психического, и функция памяти – переработка, оценка, хранение, воспроизведение и забывание полученной информации.



4. Программирование поведения. На основе поступающей и уже хранящейся информации нервная система либо строит новые программы взаимодействия с окружающей средой, либо выбирает наиболее подходящую из уже имеющихся программ. В последнем случае могут использоваться видоспецифические программы, заложенные генетически*, или программы, выработанные в процессе индивидуального научения**. В реализации любой программы участвуют рабочие органы (мышцы и железы), изменяющие свою функциональную активность в зависимости от поступающих к ним из ЦНС сигналов. Нервная система осуществляет текущий контроль правильности выполнения программы: результаты поведения постоянно оцениваются, и на основе этой оценки могут вноситься поправки в программу поведения.

 

Место анатомии среди других наук

Изучению нервной системы посвящён раздел знаний, называемый в России и странах Европы неврологией, то есть учением о нервной системе, а в Америке – нейробиологией. Этот раздел представлен несколькими науками, изучающими нервную систему на разных уровнях и с помощью разных методов.

К первой группе наук, изучающих морфологию нервной системы и образующих её элементов, относятся:

1. Анатомия (греч. «anatemno»– рассекаю) является самой древней из наук о строении человеческого тела. Раздел этой науки – анатомия ЦНС – изучает морфологию нервной системы на органном уровне.

2. Гистология ЦНС (греч. «histos» – ткань) изучает строение нервной системы на тканевом и клеточном уровнях.

3. Цитология (греч. «сytos» – клетка) изучает строение нейронов и клеток глии на клеточном и субклеточном уровнях.

4. Биохимия и молекулярная биология изучают строение нейронов и вспомогательных клеток нервной системы на субклеточном и молекулярном уровнях.

Следующая группа дисциплин изучает функции нервной системы с помощью экспериментов и моделирования процессов, происходящих в ней:

5. Физиология ЦНС исследует общие закономерности функционирования нервных клеток, отдельных структур ЦНС и всей нервной системы в целом.

6. Физиология анализаторов (сенсорных систем) изучает работу структур, воспринимающих и перерабатывающих информацию.

Из наук, имеющих прикладное значение, знание анатомии ЦНС необходимо, в первую очередь, в медицине (7). Функции ЦНС и их связь с различными отделами и структурами мозга изучаются клиницистами, наблюдающими за больными людьми*. Особенно большой вклад сделан врачами таких медицинских специальностей, как невропатология и нейрохирургия, отоларингология, психиатрия.

Все вышеперечисленные науки изучают работу ЦНС с помощью объективных методов исследования. В отличие от них, психология (8) и нейропсихология (9) делают упор на субъективные, косвенные методы изучения психики человека и процессов в ЦНС, лежащих в её основе. Однако современная психология, особенно клиническая психология, уже не мыслима без знаний, полученных точными науками, позволяющими не умозрительно предполагать, а точно знать механизмы психических нарушений и возможные пути их компенсации. Это связано с тем, что, несмотря на наличие у человека сложной психики, речи, сознания, интеллекта и социального характера его существования (то, что называется духовной и социальной сущностью человека), он остаётся биологическим субъектом, и биологические законы определяют или, по крайней мере, влияют на все высшие функции человека.

Изучение ЦНС традиционно начинается с анатомии, так как без знания основных элементов нервной системы и их взаимосвязей невозможно изучать функции ЦНС. При изучении связи поведения со структурами и функциями ЦНС учёные опираются на основной постулат современной неврологии (нейробиологии), который гласит, что всё многообразие и уникальность психической деятельности человека, функции здорового и больного мозга могут быть объяснены из особенностей строения и свойств основных анатомических структур мозга.

АНАТОМИЯ ЦНС Лекция 1 Анатомия ЦНС как научная

  • Главная
  • О сайте
  • Политика защиты авторских прав
  • Контакты

Advertisements

Введение в анатомию ЦНС — СЧАСТЬЕ ЕСТЬ! Философия. Мудрость. Книги. — ЖЖ 1.1. История анатомии ЦНС
1.2. Методы исследования в анатомии
1.3. Анатомическая терминология

Анатомия человека — наука, изучающая строение человеческого организма и закономерности развития этого строения.
Современная анатомия, являясь частью морфологии, не только исследует строение, но и старается объяснить принципы и закономерности формирования определенных структур. Анатомия центральной нервной системы (ЦНС) является частью анатомии человека. Знание анатомии ЦНС необходимо для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии.

1.1. История анатомии ЦНС
Уже в первобытные времена существовало знание о расположении жизненно важных органов человека и животных, о чем свидетельствуют наскальные рисунки. В Древнем мире, особенно в Египте, в связи с мумификацией трупов, были описаны некоторые органы, но их функции представлялись не всегда правильно.

Большое влияние на развитие медицины и анатомии оказали ученые Древней Греции. Выдающимся представителем греческой медицины и анатомии был Гиппократ (ок. 460-377 гг. до н. э.). Он считал основой строения организма четыре «сока»: кровь (sanguis), слизь (phlegma), желчь (сhоlе) и черную желчь (тelaina сhоle). От преобладания одного из этих соков, по его мнению, зависят виды темперамента человека: сангвиник, флегматик, холерик и меланхолик. Так возникла «гуморальная» (жидкостная) теория строения организма. Подобная классификация, но, разумеется, уже с иным смысловым содержанием, сохранилась до наших дней.

В Древнем Риме наиболее яркими представителями медицины были Цельс и Гален. Авл Корнелий Целъс (I в. до н. э) — автор восьмитомного трактата «О медицине», в котором он собрал воедино известные ему знания по анатомии и практической медицине античного времени. Большой вклад в развитие анатомии сделал римский врач Гален (ок. 130-200 гг. н. э), который первый ввел в науку метод вивисекции животных и написал классический трактат «О частях человеческого тела», в котором впервые дал анатомо-физиологическое описание целостного организма. Гален считал человеческое тело состоящим из плотных и жиких частей, и свои научные выводы основывал на наблюдениях над больными людьми и на результатах вскрытия трупов животных. Он явился и основоположником экспериментальной медицины, проводя различные эксперименты на животных. Однако анатомические концепции этого ученого были не лишены недостатков. Например, Гален большую часть своих научных изысканий проводил на свиньях, организм которых, хотя и близок к человеческому, все же имеет ряд существенных отличий от него. В частности, Гален придавая большое значение открытой им «чудесной сети» (rete mirabile) — кровеносному сплетению у основания мозга, так как полагал, что именно там образуется «животный дух», управляющий движениями и ощущениями. Эта гипотеза просуществовала почти 17 веков, пока анатомы не доказали, что подобная сеть есть у свиней и быков, но отсутствует у человека.

В эпоху Средневековья вся наука в Европе, в том числе и анатомия, была подчинена христианской религии. Врачи того времени как правило ссылались на ученых античности, чей авторитет был подкреплен церковью. В это время в анатомии не было сделано существенных открытий. Были запрещены препарирование трупов, вскрытия, изготовление скелетов и анатомических препаратов. Положителыгую роль в преемственности античной и европейской науки сыграл мусульманский Восток. В частности, в Средние века у врачей пользовались популярностью книги Ибн Сипы (980-1037), известного в Европе как Авиценна, автора «Канона врачебной науки», содержащего важные анатомические сведения.

Анатомы эпохи Возрождения добились разрешения на проведение вскрытий. Благодаря этому были созданы анатомические театры для проведения публичных вскрытий. Зачинателем этого титанического труда явился Леонардо да Винчи, а основоположником анатомии как самостоятельной науки— Андрей Везалий (1514-1564). Андрей Везалий изучал медицину в Сорбоннском университете и очень скоро осознал недостаточность существовавших тогда анатомических знаний для практической деятельности врача. Положение осложнялось запретом церкви на вскрытие трупов — единственный источник изучения человеческого тела в то время. Везалий, несмотря на реальную опасность со стороны инквизиции, систематически изучал строение человека и создал первый действительно научный атлас человеческого тела. Для этого ему приходилось тайком выкапывать свежезахоронеиные трупы казненных преступников и на них проводить свои исследования. При этом он разоблачил и устранил многочисленные ошибки Галена, чем заложил аналитический период в анатомии, в течение которого было сделано множество открытий описательного характера. В своих трудах Везалий уделил основное внимание планомерному описанию всех органов человека, в результате чего ему удалось открыть и описать много новых анатомических фактов (рис. 1.1).

Рис. 1.1. Рисунок вскрытого мозга из атласа Андрея Везалия (1543 г.):

За свою деятельность Андрей Везалий подвергся преследованию со стороны церкви, был отправлен на покаяние в Палестину, попал в кораблекрушение и умер на острове Занте в 1564 г.

После работ А. Везалия анатомия стала развиваться более быстрыми темпами, кроме того, церковь уже не так жестко преследовала вскрытие трупов врачами и анатомами. В результате изучение анатомии стало неотъемлемой частью подготовки врачей во всех университетах Европы (рис. 1.2).

Рис. 1.2. Рембрандт Харменс ван Рейн. Урок анатомии доктора Тульпа (конец XVII века):

Попытки связать анатомические структуры с психической деятельностью породили в конце XVIII века такую науку, как френология. Ее основатель, австрийский анатом Франц Галь, пытался доказать наличие жестко определенных связей между особенностью строения черепа и психическими особенностями людей. Однако спустя некоторое время объективные исследования показали необоснованность френологических утверждений (рис. 1.3).

Рис. 1.3. Рисунок из атласа по френологии, изображающий «бугры скрытности, жадности и чревоугодия» на голове человека (1790 г.):

Следующие открытия в области анатомии ЦНС были связаны с совершенствованием микроскопической техники. Сначала Август фон Валлер предложил свой метод валлеровской дегенерации, позволяющий прослеживать пути нервных волокон в организме человека, а затем открытие новых способов окрашивания нервных структур Э. Гольджи и С. Рамон-и-Кахалом позволило выяснить, что помимо нейронов в нервной системе существует еще огромное количество вспомогательных клеток — нейроглий.

Вспоминая историю анатомических исследований ЦНС, следует отметить, что такой выдающийся психолог, как Зигмунд Фрейд, начинал свою карьеру в медицине именно как невролог — т. е. исследователь анатомии нервной системы.

В России развитие анатомии было тесно связано с концепцией нервизма, провозглашающей преимущественное значение нервной системы в регулировании физиологических функций. В середине XIX века киевский анатом В. Бец (1834-1894) открыл в V слое коры головного мозга гигантские пирамидные клетки (клетки Беца) и выявил различие в клеточном составе разных участков мозговой коры. Тем самым он положил начало учению о цитоархитектонике мозговой коры.

Крупный вклад в анатомию головного и спинного мозга внес выдающийся невропатолог и психиатр В. М. Бехтерев (1857-1927), который расширил учение о локализации функций в коре мозга, углубил рефлекторную теорию и создал анатомо-физиологическую базу для диагностики и понимания проявлений нервных болезней. Кроме того, В. М. Бехтерев открыл ряд мозговых центров и проводников.

В настоящее время фокус анатомических исследований нервной системы из макромира переместился в микромир. Ныне наиболее значительные открытия совершаются в области микроскопии не только отдельных клеток и их органоидов, но и на уровне отдельных биомакромолекул.

1.2. Методы исследования в анатомии
Все анатомические методы можно условно разделить на макроскопические, которые изучают весь организм целиком, системы органов, отдельные органы или их части, и на микроскопические, объектом которых являются ткани и клетки организма человека и клеточные органеллы. В последнем случае анатомические методы смыкаются с методами таких наук, как гистология (наука о тканях) и цитология (наука о клетке) (рис. 1.4).

Рис. 1.4. Основные группы методов исследования морфологии ЦНС:

В свою очередь, макроскопические и микроскопические исследования состоят из набора различных методических приемов, позволяющих изучать различные аспекты морфологических образований в нервной системе в целом, в отдельных участках нервной ткани или даже в отдельном нейроне. Соответственно, можно выделить набор макроскопических (рис. 1.5) и микроскопических (рис. 1.6) методов исследования морфологии ЦНС

Рис. 1.5. Макроскопические методы исследования нервной системы:

Рис. 1.6. Микроскопические методы исследования нервной системы:

Так как задачей анатомического исследования (с точки зрения психологии) является выявление связей анатомических структур с психическими процессами, то к методам исследования морфологии (структуры) ЦНС можно подключить несколько методов из арсенала физиологии (рис. 1.7).

Рис. 1.7. Общие методы для физиологии и анатомии ЦНС:

1.3. Анатомическая терминология
Для правильного представления о структурах головного и спинного мозга необходимо знать некоторые элементы анатомической номенклатуры.

Тело человека представлено в трех плоскостях, соответственно горизонтальной, сагиттальной и фронтальной.
Горизонтальная плоскость проходит, как следует из ее названия, параллельно горизонту, сагиттальная делит тело человека на две симметричные половины (правую и левую), фронтальная плоскость разделяет тело на переднюю и заднюю части.

В горизонтальной плоскости выделяют две оси. Если объект находится ближе к спине, то о нем говорят, что он расположен дорсально, если ближе к животу — вентрально. Если объект расположен ближе к средней линии, к плоскости симметрии человека, то о нем говорят как о расположенном медиально, если дальше — то латерально.

Во фронтальной плоскости также выделяют две оси: медио-латеральную и ростро-каудальную. Если объект расположен ближе к нижней части тела (у животных — к задней, или хвостовой), то о нем говорят как о каудальном, а если к верхней (ближе к голове) — то он расположен рострально.

В сагиттальной плоскости человека также выделяют две оси; ростро-каудальную и дорсо-вентральную. Таким образом, взаиморасположение любых анатомических объектов можно охарактеризовать их взаиморасположением в трех плоскостях и осях.

Второе высшее образование «психология» в формате MBA
предмет: Анатомия и эволюция нервной системы человека.
Методичка «Анатомия центральной нервной системы»

Анатомия ЦНС — Тишевской И.А

1.2. Место анатомии среди других наук

Изучению нервной системы посвящён раздел знаний, называемый в России и странах Европы неврологией, то есть учением о нервной системе, а в Америке – нейробиологией. Этот раздел представлен несколькими науками, изучающими нервную систему на разных уровнях и с помощью разных методов.

К первой группе наук, изучающих морфологию нервной системы и образующих её элементов, относятся:

1.Анатомия (греч. «anatemno» – рассекаю) является самой древней из наук о строении человеческого тела. Раздел этой науки – анатомия ЦНС – изучает морфологию нервной системы на органном уровне.

2.Гистология ЦНС (греч. «histos» – ткань) изучает строение нервной системы на тканевом и клеточном уровнях.

3.Цитология (греч. «сytos» – клетка) изучает строение нейронов и клеток глии на клеточном и субклеточном уровнях.

4.Биохимия и молекулярная биология изучают строение нейронов и вспомогательных клеток нервной системы на субклеточном и молекулярном уровнях.

Следующая группа дисциплин изучает функции нервной системы с помощью экспериментов и моделирования процессов, происходящих в ней:

5.Физиология ЦНС исследует общие закономерности функционирования нервных клеток, отдельных структур ЦНС и всей нервной системы в целом.

6.Физиология анализаторов (сенсорных систем) изучает работу структур, воспринимающих и перерабатывающих информацию.

Из наук, имеющих прикладное значение, знание анатомии ЦНС необходимо, в первую очередь, в медицине (7). Функции ЦНС и их связь с различными отде-

лами и структурами мозга изучаются клиницистами, наблюдающими за больными людьми*. Особенно большой вклад сделан врачами таких медицинских специальностей, как невропатология и нейрохирургия, отоларингология, психиатрия.

Все вышеперечисленные науки изучают работу ЦНС с помощью объективных методов исследования. В отличие от них, психология (8) и нейропсихология

(9) делают упор на субъективные, косвенные методы изучения психики человека и процессов в ЦНС, лежащих в её основе. Однако современная психология, особенно клиническая психология, уже не мыслима без знаний, полученных точными науками, позволяющими не умозрительно предполагать, а точно знать механизмы психических нарушений и возможные пути их компенсации. Это связано с тем, что, несмотря на наличие у человека сложной психики, речи, сознания, интеллекта и социального характера его существования (то, что называется духовной и социальной сущностью человека), он остаётся биологическим субъектом, и биологические законы определяют или, по крайней мере, влияют на все высшие функции человека.

Изучение ЦНС традиционно начинается с анатомии, так как без знания основных элементов нервной системы и их взаимосвязей невозможно изучать функ-

* Этот метод изучения роли различных структур мозга называется «выведение функции из дисфункции».

Анатомия ЦНС для психологов

Основные понятия анатомии ЦНС

Нервная система человека состоит из возбудимой специфической ткани, называемой нервной. Нервная ткань представлена двумя отделами:

  • центральным,
  • периферическим.

Центральная нервная система защищается костными образованиями скелета:

  • черепной коробкой, в которой располагается головной мозг;
  • позвоночником, в спинномозговом канале которого располагается спинной мозг.

Периферическую нервную систему составляют нервы и нервные узлы.

Выделяют две части периферической нервной системы:

  • соматическую;
  • вегетативную.

Определение 1

Часть нервной системы, регулирующая работу мышц скелета, называется соматической.

С помощью соматической нервной системы человек управляет движениями, произвольно вызывает или прекращает их.

Определение 2

Часть нервной системы, которая регулирует функционирование внутренних органов, называется вегетативной.

Работа вегетативной нервной системы не подчинена воле человека.

Для обозначения взаимного расположения основных структур нервной системы анатомами используются специфические термины:

Готовые работы на аналогичную тему

  • плоскость, которая проходит вдоль середины тела и делит его на правую и левую половину, называется сагиттальной;
  • структуры, которые расположены на спинной части тела, называются дорсальными;
  • структуры, расположенные на брюшной стороне тела человека, называются вентральными;
  • структуры, которые лежат по центру тела вблизи от сагиттальной плоскости, называются медиальными;
  • лежащие сбоку от сагиттальной плоскости структуры, носят название латеральных.
  • самые верхние точки нервных структур называются апикальными;
  • точки, лежащие в основании структуры нервной системы – базальными;
  • направление в сторону нижней части тела называется каудальным;
  • направление в сторону головной части — ростральным.

Нервная ткань

Формирование нервной системы человека начинается с образования нервной пластины, представляющей собой полоску эмбриональной утолщенной эктодермы, расположенную над хордой. Нервная пластинка прогибается, а ее края при этом смыкаются, в результате чего образуется нервная трубка, которая отщипляется от эктодермы, погружаясь под нее.

В самом начале формирования стенки нервных трубок состоят из слоя клеток нейроэпителия. В процессе деления клеток стенки нервных трубок утолщаются. Слой клеток, которые принадлежат к центральному каналу, носит название эпендимного. Именно эти клетки дают начало всем клеткам нашей нервной системы. Зачатковая клетка в свою очередь делится на две дочерних. При этом одна становится нейробластом. Нейробласты изменяются и превращаются в нейроны — зрелые нервные клетки. Другая дочерняя клетка образует длинные радиальные отростки — спонгиобласты. Спонгиобласты играют важную роль в формировании нервных тканей, так как по их отросткам мигрируют изменяющиеся нервные клетки. Почти все клетки нервной ткани имеют общее происхождение и трансформируются в два типа клеток: нейроны и нейроглию.

Нейроны

Определение 3

Нейроны — возбудимые клетки нервной системы. Они способны к возбуждению и проведению возбуждения. Нейроны в течение жизни не делятся.

В нейроне выделяют сому (тело) и отростки. Сома, в свою очередь, имеет ядро и клеточные органоиды. Основная функция сомы заключается в осуществлении метаболизма клетки. Количество отростков у нейронов разное, но все они делятся на два основных типа:

  • дендриты — короткие, ветвящиеся сильно отростки, функцией которых является сбор информации от других нейронов.
  • аксоны, которых в каждом нейроне по одному и их функция заключается в проведении нервного импульса к терминалям аксонным.

Типы нейронов

Все нейроны делятся на несколько типов:

  • униполярные клетки;
  • биполярные клетки;
  • мультиполярные клетки.

Униполярные клетки принадлежат к болевой, температурной, тактильной модальностям и расположены в сенсорных узлах: спинальном, тройничном и каменистом.

Биполярные клетки имеют всего один аксон и один дендрит, они формируют зрительную систему, характерны для слуховой и обонятельной сенсорных систем.

Мультиполярные клетки обладают одним аксоном и множеством дендритов. К данному типу нейронов принадлежит большая часть нейронов ЦНС.

Развитие нервной системы в онтогенезе

Определение 4

Онтогенез — индивидуальное развитие организма.

Онтогенез делится на два важных периода:

  • пренатальный или внутриутробный;
  • постнатальный, который начинается после рождения.

Пренатальный период подразделяется на три основных периода:

  • начальный, который охватывает первую неделю развития;
  • зародышевый, длящийся от начала второй недели до окончания восьмой недели, т.е. от имплантации до полного завершения закладки всех органов;
  • плодный, начинающийся с девятой недели и до рождения и сопровождающийся усиленным ростом организма.

Постнатальный онтогенез человеческой нервной системы начинается с рождением ребенка. Головной мозг новорожденного весит от $300$ до $400$ грамм. После рождения прекращается образование новых нейронов из нейробластов, нейроны не делятся. Но уже к $8$-му месяцу жизни вес мозга практически удваивается, а к $4-5$ году жизни утраивается. Масса мозга растет за счет миелинизации и увеличения количества отростков. Максимальной массы мозг мужчин достигает к $20-29$ годам, а у женщин уже к возрасту $15-19$ лет. После прохождения пятидесятилетнего рубежа мозг уплощается и вес его снижается примерно на $100$ грамм.

Анатомия и физиология нервной системы

метки: Система, Орган, Нейрон, Деятельность, Клетка, Симпатический, Парасимпатический, Организм

Лекция 2-3.

1. Общий план строение нервной системы. Значение нервной системы.

2. Структура нейрона, его свойства.

3. Рефлекс как основа нервной деятельности.

4. Основные физиологические процессы – возбуждение и торможение.

5. Возрастные особенности нервных процессов у детей.

6. Возрастные особенности центральной нервной системы.

1.Основными функциями нервной системы являются быстрая, точная передача информации и ее интеграция, обеспечение взаимосвязи между органами и системами органов. Функционирование организма как единого целого, его взаимодействие с внешней средой.

Нервная система регулирует, координирует деятельность различных органов, приспосабливает деятельность всего организма к изменяющимся условиям внешней и внутренней среды.

В нервной системе происходит прием и анализ разнообразных сигналов из окружающей среды и внутренних органов, формируются ответные реакции на эти сигналы.

С деятельностью высших отделов нервной системы связано осуществление психических функций: осознание сигналов окружающего мира, их запоминание, принятие решения и организация целенаправленного поведения, абстрактное мышление и речь.

Нервная система в структурном и функциональном отношении делится на центральную и периферическую.

Центральная нервная система (ЦНС) – это совокупность нервных образований спинного и головного мозга, обеспечивающих восприятие, обработку, передачу, хранение и воспроизведение информации с целью адекватной реакции организма на изменения окружающей среды, организации оптимального функционирования органов, систем и организма в целом. Она представлена спинным и головным мозгом.

Периферическая частьнервной системы образовананервами– пучками нервных волокон, покрытых сверху общей соединительнотканной оболочкой, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела, а такженервных узлов, илиганглиев– скоплений нервных клеток вне спинного и головного мозга.

Периферическую нервную системув свою очередь делят насоматическую, которая обеспечивает иннервацию поверхности тела (кожа, скелетные мышцы и органы чувств) ивегетативную, которая иннервирует внутренние органы, сосуды, потовые железы, а также трофическую иннервацию скелетных мышц, рецепторов и различных отделов ЦНС. Вегетативная нервная система имеет два отдела:симпатический и парасимпатический.

3 стр., 1170 слов

ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ .doc

… происходить лишь при условии, что органы чувств снабжают центральную нервную сис­тему информацией, объективно отражающей … полушарий осуществляется взаимосвязь первой и второй сигнальных систем, возможность их непрерывного взаимодей­ствия. Разделение … поведения человека — результат совместной деятельности обеих сигнальных систем, подкорковых и стволовых образований мозга. Человек может …

С деятельностью вегетативной нервной системы связаны рефлекторные реакции поддержания кровяного давления на относительно постоянном уровне, теплорегуляция, изменение частоты и силы сердечных сокращений при мышечной работе и другое.

Большинство внутренних органов обладает двойной иннервацией: к каждому из них подходят два нерва – симпатический и парасимпатический), эффекты которых, как правило, противоположны. Так, симпатический нерв ускоряет и усиливает работу сердца, а парасимпатический тормозит; симпатический нерв вызывает расширение зрачка, а парасимпатический сужение. Симпатическая нервная система способствует интенсивной деятельности организма, особенно в экстремальных условиях, когда требуется напряжение всех сил. Парасимпатическая часть – система «отбоя», она способствует восстановлению истраченных организмом ресурсов. Все отделы вегетативной нервной системы подчинены высшим вегетативным центрам, расположенным в промежуточном мозге.

2. Структура нейрона, его свойства

Нейрон– основная структурная и функциональная единица нервной системы, которая воспринимает раздражения, перерабатывает их и передает информацию к различным органам тела. Нейроны представляют собой клетки, разнообразные по форме, по общему же строению они не отличаются от любой другой клетки тела. Нейрон – это сложноустроенная высокодифференцированная клетка состоит изтела, илисомы, иотростков разного типа –дендритов и аксонов. Особенностью строения нейронов является наличие в цитоплазме специфических образований: тигроидного вещества и нейрофибрилл (тонкие нити, состоящие из белковых молекул, участвующие в проведении импульсов возбуждения по нервной клетке).

Тигроидное вещество содержит РНК, количество которой увеличивается до полового созревания, а затем находится на относительно постоянном уровне, если условия существования организма остаются благоприятными. При экстремальных ситуациях содержание РНК в тигроидном веществе может уменьшиться, а само вещество полностью распадется, что приводит к гибели нейрона.

7 стр., 3041 слов

Физиология высшей нервной деятельности и сенсорных систем

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Российский государственный профессионально-педагогический университет» Факультет психологии и педагогики Кафедра ППР Контрольная работа «ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ И СЕНСОРНЫХ СИСТЕМ» Выполнила: студентка гр. Симанова А.С. …

Длинный отросток – аксон (ось)– проводит возбуждение от тела нервной клетки к другим нейронам и органам (мышцам, железам).

Конец аксона сильно ветвится, образуя контакты со многими сотнями клеток. У нейрона аксон всегда один.

Дендриты(дерево) – многочисленные короткие ветвящиеся отростки. На дендритах есть выросты (шипики).

Ветвистость дендритов и наличие шипиков значительно увеличивают поверхность дендрита в сравнении с телом клетки и создают условия для размещения на них большого числа контактов с другими нервными клетками –синапсов.Количество синапсов на теле одного нейрона достигает 100 и более, а на дендритах одного нейрона – нескольких тысяч.

Нервная ткань помимо нейронов включает клетки нейроглии, которые, окружают со всех сторон нейроны и выполняют для них опорную, питательную и электроизолирующую функции.

Нейроны, как и все живые клетки, обладают раздражимостью,т.е. способностью под влиянием факторов внешней и внутренней среды, так называемыхраздражителей, переходить из состояния покоя в состояние активности. Изменения в окружающей среде или организме называют раздражителями, процесс действия раздражителя – раздражением. Выделяюттри группы раздражителей: физические (электричество, ионизирующее излучение укол, удар, температура, давление, свет), физико-химические (изменения осмотического давления в клетках, содержания в клетках ионов водорода) и химические (лекарственные препараты, биологически активные вещества, гормоны, ферменты, яды).

Физиологические раздражители делят на адекватные и неадекватные. К адекватным относят раздражители, к восприятию которых клетки и ткани организма приспособились в процессе эволюции. Например, для глаз – свет, для кожи – давление и температура. К неадекватным раздражителям относят те, к восприятию которых клетки и ткани специально не приспособлены. Например, ощущение светового блика возникают в глазах не только при воздействии света, а также при механических воздействиях, в частности, при надавливании на глазное яблоко.

5 стр., 2498 слов

Общая схема строения нервной системы. Нервная ткань.

… без предшествующего возбуждения в тормозных нейронах и синапсах (при опережающем торможении нервные импульсы возбуждают тормозные клетки, в результате чего при возбуждении одних групп … состояние покоя Нервная система состоит из нейронов – нервных клеток. Помимо нейронов в состав нервной системы входят клетки глии. Совокупность нейронов и глиальных клеток составляет нервную ткань. Клетки глии, …

Основными свойствами нервной ткани являются возбудимость, проводимость и лабильность, которые характеризуют функциональное состояние нервной системы человека и определяют его психические процессы.

Клетки нервной ткани в процессе эволюции приспособились к быстрой ответной реакции на действие раздражителя, поэтому нервную ткань называют возбудимой,а ее способность быстро реагировать на раздражение –возбудимостью. Количественной мерой возбудимости являетсяпорог раздражения– минимальная величина раздражителя, способная вызвать ответную реакцию ткани. В этой связи раздражитель меньшей силы называют подроговым, а большей – надпороговым.

Возбудимостьпроявляется в процессахвозбуждения, которые представляют собой изменения процессов обмена веществ в клетках нервной ткани. Изменение обмена веществ сопровождается передвижением через клеточную мембрану отрицательно и положительно заряженных ионов, что вызывает изменение активности клетки. Это изменение обмена веществ сопровождается появлением электрических потенциалов – электрических, илинервных импульсов.

Проводимость– способность живой ткани проводить возбуждение. Проводимость нервной ткани связана с распространением по ней процессов возбуждения. Возникнув в одной клетке, электрический (нервный) импульс легко переходит на соседние клетки и может передаваться в любой участок нервной системы.

Возникший в месте возбуждения потенциал действия (изменение электрического заряда мембраны) вызывает изменения электрических зарядов в соседнем участке, а те в свою очередь – в следующем, и так по всей цепи нейронов распространяется волна возбуждения, вызывая новые потенциалы действия.

Лабильность– характеризует способность возбудимой ткани воспроизводить определенное количество потенциалов действия в единицу времени. Нервная ткань обладает наибольшей лабильностью, у мышечной она значительно ниже. Функциональное состояние ткани влияет на ее лабильность. Патологические процессы и утомление приводят к снижению лабильности нервной ткани, а систематические тренировки – к ее повышению. Изучением лабильности возбудимых тканей занимался русский физиолог Н.Е.Введенский.

13 стр., 6156 слов

Центральная нервная система 2

… самым вызвать появление новых нейронов? Трансплантация нервной ткани. Ученые пытались решить проблему восстановления нервной ткани таким путем — пересадить нервную ткань, взятую от взрослых … нейронов проводят возбуждение от воспринимающих раздражение нервных окончаний или клеток к центральной нервной системе. Эти отростки нервных клеток, несущие с периферии возбуждение в центральную нервную …

Связь между отдельными нейронами осуществляется с помощью специального приспособления – синапса.

Синапспредставлен двумя мембранами –пресинаптическойипостсинаптической,между которыми имеетсясинаптическая щельразмером не более 20 нм. Пресинаптическая мембрана находится на нервных окончаниях (окончаниях аксона), которые в ЦНС имеют вид пуговок, колечек, бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, к которому передается нервный импульс.

Закодированная в нервных импульсах информация передается с одного нейрона на другой с помощью медиаторов (от лат.mediator– посредник) – химических веществ, способных вызывать возбуждение постсинаптической мембраны. Медиатор располагается в синаптических пузырьках в пресинаптической мембране. Пи возбуждении нейрона медиатор выходит в синаптическую щель, диффундирует к постсинаптической мембране, изменяет ее проницаемость к ионам натрия и вызывает возбуждение второго нейрона. Передача возбуждения происходит только в одном направлении – от пресинаптической мембраны к постсинаптической. К возбуждающим медиаторам относят ацетилхолин, адреналин или норадреналин. Существуют также особые нейроны, синаптические окончания которых выделяют тормозные медиаторы, вызывающие торможение соседнего нейрона. К ним относятся гамма-аминомасляная кислота и глицин.

Каждая нервная клетка имеет множество возбуждающих и тормозных синапсов, в результате чего происходит суммация сигналов и в конечном счете формируется окончательный ответ на пришедший импульс.

Число и размеры синапсов в процессе постнатального развития человека значительно увеличиваются. У взрослого на одном нейроне может быть до 10 тыс. синапсов. Число межнейронных связей находится в прямой зависимости от процессов обучения: чем интенсивнее идет обучение, тем больше синапсов образуется.

13 стр., 6091 слов

Контрольная работа по анатомии- Нейрон — структурно — функциональная единица нервной системы

… возбуждении разных  нейронов, а в различных комбинациях  со возбужденных   участков  и клеток  мозга.  Нервные …   импульс. Нервные   импульсы,  возникающие  при возбуждении  особых тормозящих нейронов, вызывают   … в ходе эволюции по мере увеличения числа нервных клеток (нейронов) мозга и усложнения его структуры. Физиологические исследования …

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами.Тела нейронов и большая часть их дендритов сосредоточены в спинном и головном мозге. Часть дендритов и аксоны, длина которых у человека может достигать 1-1,5 м, выходят далеко за пределы ЦНС. Нервные волокна образуютнервы.Они связывают все участки тела с ЦНС.

Основная функция нервных волокон и нервов – проведение нервных импульсов. Различают чувствительные нервы (афферентные, центростремительные) проводят нервные импульсы в ЦНС и двигательные (эфферентные, центробежные), которые проводят импульсы от ЦНС к периферическим органам. Смешанные нервы состоят из чувствительных и двигательных волокон. Некоторые нервные волокна покрыты оболочкой, состоящей из жироподобного вещества – миелина, выполняющего трофические, защитные и электроизолирующие функции. Такие волокна называют мякотными, а не имеющие миелина – безмякотными. Скорость проведения возбуждения в безмякотных волокнах – 1-3 м/с, а в мякотных достигает 120 м/с.

Развитие миелиновой оболочки происходит в основном в первые 2-3 года и в значительной степени зависит от условий жизни ребенка. В неблагоприятных условиях процесс миелинизации может замедляться на несколько лет, что затрудняет управляющую и регулирующую деятельность нервной системы.

3. Рефлекс как основа нервной деятельности

В основе всей деятельности нервной системы лежат рефлекторные акты. Рефлекс– это ответная реакция организма на раздражение из внешней или внутренней среды, осуществляемая с обязательным участием ЦНС.

Путь, по которому проходит возбуждение при рефлексе, называется рефлекторной дугой, а время, в течение которого возбуждение проходит по рефлекторной дуге, —временем рефлекса.

В рефлекторной дуге различают следующие элементы:

1. рецепторы, воспринимающие раздражения;

2. афферентный путь от рецепторов к ЦН;

3. нервный центр, расположенный в ЦНС;

6 стр., 2886 слов

Функции воли:

Воля. Существуют две теории о поведении человека: Реактивная– поведение человека рассматривается как реакция на внешние и внутренние стимулы. При такой интерпретации поведения понятие воли вообще не нужно. Активная– поведение человека зависит от его сознательного выбора и не сводится к реакциям. Воля очень тесно связана с мышлением, хотя на первый взгляд кажется, что мышление относится лишь к …

4. эфферентный путь от ЦНС к эффектору (рабочему органу).

5. эффектор (мышца, железа).

Исполнительный орган, деятельность которого изменяется в результате рефлекса, называют эффектором.

В простейшем случае рефлекторная дуга состоит из двух нейронов и одного синапса, т.е. является двухнейронной (моносинаптической).

Может быть трехнейронная рефлекторная дуга или если много нейронов принимают участие в образовании дуги – многонейронной, или полисинаптической. Говоря о рефлекторной дуге, необходимо помнить, что любой рефлекторный акт осуществляется при участии большого количества нейронов. Двух- или трехнейронная дуга рефлекса всего лишь схема. В действительности рефлекс возникает при раздражении не одного, а многих рецепторов, расположенных в той или иной области тела.

По месту расположения рецепторы делят на экстерорецепторы,интерорецепторы и проприорецепторы.Экстерорецепторывоспринимают раздражения внешней среды. К ним относят сетчатку глаза, рецепторы уха, кожи, органов обоняния и вкуса.Интерорецепторырасположены в тканях внутренних органов (сердца. печени, почек, кровеносных сосудов) и воспринимают изменения внутренней среды организма.Проприорецепторынаходятся в мышцах, сухожилиях и воспринимают сокращения и растяжения мускулатуры, т.е. сигнализируют о положении и движении тела.

Рецепторы способны отвечать на действие раздражителей определенной силы в течение определенного времени и вызывать процесс возбуждения, которое по чувствительным нервным волокнам передается в ЦНС. Здесь за счет вставочных нейронов информация распространяется в различные отделы, обеспечивая целостный ответ нервной системы. В ЦНС происходит обработка поступивших сигналов (анализ и синтез) и передача импульсов на двигательные нервные волокна.

Рефлекторный акт не заканчивается деятельностью исполнительного органа. Каждый эффектор имеет свои чувствительные рецепторы, которые в свою очередь сигнализируют в ЦНС об осуществленной работе. Это вторичные афферентные импульсыпостоянно сигнализируют в ЦНС о состоянии двигательного аппарата, и в ответ на эти сигналы из ЦНС к мышцам поступают новые импульсы, включающие следующую фазу движения или изменяющие движение в соответствии с условиями деятельности. Связь чувствительных рецепторов рабочего органа с ЦНС называется «обратной связью». Поэтому правильнее говорить не о рефлекторной дуге, а о рефлекторном кольце.

Учение о рефлекторной деятельности ЦНС привело к представлению о нервном центре. Нервным центромназывают совокупность нейронов центральной нервной системы, участвующих в осуществлении определенного рефлекторного акта или регуляции той или иной функции.

Нервный центр представляет собой сложные функциональные объединения нейронов, расположенных в различных отделах ЦНС, согласованно участвующие в регуляции функций и рефлекторных реакциях.

В ЦНС постоянно происходит взаимодействие двух процессов – возбуждения и торможения.

Возбуждение – это специфический физиологический процесс, возникающий и распространяющийся в возбудимых тканях, сопровождающийся физико-химическими и биоэлектрическими изменениями в этих тканях. Квозбудимым тканям относят нервную, мышечную и железистую, так как в ответ на раздражение в них возникает процесс возбуждения. В нервной ткани возбуждение распространяется от одного нейрона к другому в виде нервных импульсов (волн возбуждения).

Торможение– это второй специфический физиологический процесс, возникающий в возбудимых тканях и сопровождающийся физико-химическими биоэлектрическими изменениями в этих тканях. Торможение местный процесс, т. е не распространяется по ткани. В том месте, где возникло торможение не может возникнуть возбуждение.

5. Возрастные особенности нервных процессов у детей

У ребенка координация рефлекторных реакций далеко не совершенна. Ответная реакция у него связана с обилием ненужных движений и неэкономичными вегетативными сдвигами.

Высокая степень иррадиациинервных процессов во многом связана с плохой «изоляцией» нервных волокон. К моменту рождения ребенка многиепериферические и центральные нервные волокна не имеют миелиновой оболочки, которая обеспечивала бы изолированное проведение нервных импульсов. В результате возбуждение с одного нерва легко переходит на соседние. Миелинизация большинства нервных волокон заканчивается к 3 годам, а иногда продолжается до 5-10 лет.

Высокая степень иррадиации нервных процессов у детей определяется также тем, что на первых этапах постнатального развитие ведущее значение в регуляции рефлекторной деятельности имеет не кора, а подкорковые структуры головного мозга.

По сравнению со взрослыми у детей выше возбудимость нервной ткани, меньше специализация нервных центров, более распространены явленияконвергенции и положительной индукции. Конвергенция состоит в проведении нервных импульсов к одному нейрону из различных участков нервной системы. Н/р, на один и тот же нейрон могут конвергировать импульсы от слуховых, зрительных и кожных рецепторов. У них отмечается неустойчивость внимания.

Координация рефлекторных реакций у детей совершенствуется в ходе онтогенеза и завершается к 18-20 годам.

6. Строение цнс и ее возрастные особенности.

Спинной мозгвзрослого человека размешается в позвоночном канале и представляет собой цилиндрический тяж длиной 40-45 см и общей массой 34-38 г.

Несмотря на то что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие заканчивается только к 20 годам. За этот период масса мозга увеличивается в 8 раз.

В спинном мозге выделяют шейный, грудной, поясничный, крестцовый и копчиковый сегменты, от которых отходит 31 пара спинно-мозговых нервов, иннервирующих скелетную мускулатуру и кожу. Каждый сегмент стоит из серого и белого вещества.Серое веществорасположено в центре сегмента и в нем различают задние, боковые и передние рога. Серое вещество – это тела нервных клеток, абелое вещество– это аксоны нервных клеток покрытые миелиновой оболочкой, имеющей белый цвет.

Спинной мозг выполняет две основные функции рефлекторную ипроводниковую.Рефлекторная функциязаключается в осуществлении спинномозговых рефлексов, а проводниковая в проведении нервных импульсов от рецепторов нашего тела в головной мозг и от головного мозга к сегментам спинного мозга.Проводниковая функцияспинного мозга осуществляется за счет проводящих путей, образующих белое вещество спинного мозга. Различают восходящие и нисходящие проводящие пути.

Среди нисходящих путей есть один пирамидный и 4 экстрапирамидных. Пирамидный путь является прямым однонейронным путем и через него осуществляются наши произвольные движения. Экстрапирамидные пути являются многонейронными и через них осуществляется регуляция тонуса мышц и общие двигательные акты (поворот головы, движение всей конечностью).

Спинной мозг содержит два утолщения: шейное и поясничное, которые начинают формироваться в первые годы жизни ребенка. Шейное утолщение связано с регуляцией движений верхних конечностей, поясничное – нижних.

Головной мозгсостоит из ствола мозга и конечного мозга, включающего большие полушария.

От основания головного мозга отходят 12 пар черепно-мозговых нервов, которые связывают головной мозг со многими внутренними органами, мышцами лица, шеи, языка, глаз, а также обеспечивают поступление в головной мозг сенсорной информации от зрительных, вкусовых, слуховых и обонятельных рецепторов, вестибулярного аппарата, тактильных рецепторов кожи лица.

Основные части головного мозга выделяются уже к 3-му месяцу эмбрионального развития, а к 5 месяцу эмбриогенеза уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса головного мозга составляет около 400 г. Наиболее интенсивно головной мозг человека развивается в первые два года жизни. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6-7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого человека.

Развитие головного мозга идет гетерохронно. Прежде всего, созревают те нервные структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются по своему развитию к мозгу взрослого человека уже к 2-4 годам постнатального развития.

К стволовой частиотносят продолговатый мозг, задний мозг (варолиев мост и мозжечок), средний мозг и промежуточный. В филогенетическом отношении это наиболее древние нервные структуры, и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов.

Отделы ствола мозга выполняют проводящие и рефлекторные функции. Впродолговатом мозгенаходятся центры жизненно важных рефлексов: дыхательных и сердечных, а также здесь есть центры многих защитных рефлексов: чихания, кашля, мигания, закрытия век.Средний мозгсодержит первичные зрительные центры и принимает участие в осуществлении зрачкового рефлекса, аккомодации, конвергенции и зрительного ориентировочного рефлекса, а также здесь есть первичные слуховые центры, принимающие участие в осуществлении слухового ориентировочного рефлекса, в регуляции сложных двигательных рефлексов, в ориентации тела в пространстве.В промежуточноммозгевыделяют подбугровую область (гипоталамус) и зрительные бугры (таламус).

Гипоталамусявляется высшим вегетативным центром. Он регулирует обмен веществ, температуру тела, чувство голода и жажды, деятельность всех внутренних органов.Таламусявляется своего рода воротами, через которые все сенсорные сигналы, кроме обонятельных, поступают в кору больших полушарий большого мозга.Основная функция мозжечказаключается в координации всех двигательных актов путем согласования скорости сокращения различных мышц, участвующих в данном конкретном двигательном акте. Кроме того,мозжечок обеспечивает двигательный акт вегетативным компонентом, т.е. приспосабливает дыхание, работу сердца к данному конкретному двигательному акту.

Ретикулярная формация, или сетчатаясостоит из нейронов различной формы и размеров и расположена в центральной части ствола мозга. Ретикулярная формация оказывает влияние на спинной мозг, большие полушария и мозжечок. На спинной мозг ретикулярная формация оказывает как активирующее, так и тормозящее влияние. На большие полушария и мозжечок оказывает активирующее влияние, которое называют неспецифической активацией. При уменьшении неспецифической активации большие полушария переходят в состояние пониженной возбудимости и человек засыпает.

Конечный мозгсостоит из больших полушарий и расположенных внутри них подкорковых, или базальных ганглиев.

Конечный мозг человека является наиболее молодым в филогенетическом отношении образованием. Подкорковые ганглиипринимают участие в регуляции сложных половых и поведенческих реакций, имеют важное значение в организации оптимальной двигательной деятельности.

Большие полушария головного мозга– парные образования. Это основная часть конечного мозга. У человека они достигают наибольшего развития и составляют почти 80 % от общей массы мозга. В функциональном отношении большие полушария являются высшим отделом ЦНС, регулирующим все нижележащие отделы. Кроме того, большие полушария являются основой нашего мышления и сознания. Поверхность больших полушарий покрыта извилинами, которые представляют собой складки поверхностного слоя.

I этап.У новорожденного весспинного мозга10 г., а отношение спинного мозга к головному 1:100 (у взрослых 1:50).

В это время спинной мозг растет быстро, а дифференцировка его нейронов выражена слабо. Проводящие пути и спинномозговые нервы не покрыты миелиновой оболочкой. Отсюда широкая иррадиация возбуждения по сегментам спинного мозга, генерализация спинномозговых рефлексов.

У новорожденного вес головного мозгаоколо 400 г. В течение первого года вес увеличивается в 2,5 раза и к концу года достигает 1000 г. Однако формообразование на этом этапе идет медленными темпами и большие полушария по своей форме значительно отличаются от взрослого человека. Так, у детей первого года жизни слабо развит лобный отдел больших полушарий, борозды и извилины малы, мелки. В связи с незрелостью коры больших полушарий, функция ее несовершенна, контроль над корковыми образованиями слабый. Отсутствие корковых влияний на сегменты спинного мозга в первые месяцы жизни приводит к хаотичности движений.

Продолговатый мозг и варолиев мострастут быстро и все основные их центры сформированы. Однако их функция еще несовершенна, так как их регуляция осуществляется в основном за счет безусловных рефлексов, т. е. по принципу отклонения.

Средний мозгпо отношению к взрослым составляет 40 %. Нейроны не дифференцированы. Функции среднего мозга не совершенны, движения не точны из-за несогласованности двигательного и тонического компонентов. Конвергенция и аккомодация глазных яблок не совершенны и не координированы. У новорожденного глазные яблоки могут даже двигаться одновременно в разные стороны. Отсутствует координация сокращений и перераспределения тонуса мышц пальцев рук.

Ретикулярная формацияствола мозга занимает относительно меньший объем, чем у взрослых. Нейроны расположены тесно, их аксоны не покрыты миелиновой оболочкой. Активация больших полушарий слабая и их возбудимость понижена (новорожденный спит до 22 часов в сутки).

Мозжечок у новорожденного весит 20 г, а к концу года – 90 г. Дифференцировка слоев начинается уже с первых месяцев после рождения, но к концу года все еще остается много недифференцированных нейронов. Функции мозжечка несовершенны, движения не координированы, так как нет согласования скорости сокращения различных мышц и обеспечения движения тоническим и вегетативным компонентом.

Промежуточный мозграстет относительно медленно. В гипоталамусе не закончена дифференцировка ядер, нейроны различных ядер почти не отличаются по форме, нет миелинизации их аксонов. Отсюда несовершенство функций. Нет четкости в передаче информации в кору больших полушарий, отсутствует контроль со стороны высших вегетативных центров, имеется несовершенство терморегуляции.

Подкорковые ядрасоставляют 20% по отношению к взрослым. Дифференцировка нейронов слабая, миелинизация проводящих путей неполная. Несовершенство функций проявляется в генерализации и неловкости движений.

II этап.На втором этапе развития ребенка продолжается рост и дифференцировка всех отделов ЦНС. Весспинного мозгадостигает 14 г. На этом этапе заканчивается миелинизация всех спинномозговых нервов и афферентных (восходящих) проводящих путей спинного мозга. Нисходящие проводящие пути еще не полностью покрыты миелиновой оболочкой. Следствием этого является неточность координации спинномозговых рефлексов. Так, в 2 года нет еще дифференцировки ходьбы и бега. Ребенок быстро перебирает ногами, шаги у него короткие. Только к концу этапа наступает дифференцировка ходьбы и бега.

Продолговатый мозг и варолиев мостпродолжают дифференцировку. К концу этапа их нейроны приобретают форму взрослого человека, отличаясь только размерами. Все черепномозговые нервы к концу этапа покрываются миелиновой оболочкой и их функция почти такая же, как у взрослых.

Средний мозгпо отношению к взрослому составляет 50%. Заканчивается дифференцировкаIIIиIVпары черепно-мозговых нервов и нейронов четверохолмия. Однако нисходящие пути среднего мозга еще не полностью покрыты миелиновой оболочкой и поэтому функции еще несовершенны.

Нейроны ретикулярной формацииствола мозга к концу этапа заканчивают дифференцировку, но миелинизация нисходящего пути формации еще не закончена. В связи с этим остается неточность облегчающих и тормозящих влияний ретикулярной формации на спинномозговые рефлексы. В то же время восходящие активирующие влияния на этом этапе уже достаточно интенсивны и качественно не отличаются от взрослых.

Мозжечокрастет равномерно, его клетки заканчивают дифференцировку. Однако по размерам нейроны мозжечка еще меньше, чем у взрослых. Чувствительные пути мозжечка уже покрыты миелиновой оболочкой, а двигательные еще нет, поэтому имеется не тосчная координация тонуса мышц.

В зрительных буграх происходит дифференцировка нейронов на две группы ядер: переключающие и ассоциативные. Миелиновая оболочка нейронов еще не полностью сформирована. Отсюда несовершенен еще корковый анализ и синтез. У детей этого этапа развития активное внимание практически отсутствует. Функции гипоталамуса также несовершенны. Слабый контроль над вегетативной нервной системой, недостаточная терморегуляция.

Подкорковые ядрапо отношению к взрослым составляют 40%, нейроны их еще не закончили дифференцировку, а аксоны не покрыты миелиновой оболочкой. В связи с этим сохраняется неловкость движений.

К концу 3-го года жизни вес головного мозгаувеличивается до 1200 г. Формообразование больших полушарий и дифференцировка на этом этапе идет значительно большими темпами в сравнении с предыдущим. Поверхность больших полушарий становится похожей на таковую у взрослых, хотя борозды и извилины все еще остаются более мелкими. Относительно мало развит лобный отдел больших полушарий.

В связи с большим морфологическим и функциональным созреванием нейронов больших полушарий значительно совершенствуется и функция коры головного мозга. Так, благодаря корковому контролю над спинным мозгом более совершенными становятся произвольные движения. (ребенок ходит, бегает, прыгает).

Однако кора больших полушарий ребенка все еще остается функционально незрелой, контроль ее над нижележащими отделами ЦНС несовершенен. Особенно это касается эмоциональной сферы ребенка. Нет контроля над эмоциями.

III этап.На этом этапе развития полностью заканчивает свое развитиеспинной мозгс его проводящими путями. К концу этапа заканчивается развитие такжепродолговатого мозга и варолиева моста.

Средний мозгсотавляет 90% от взрослого. К концу этапа заканчивается дифференцировка почти всех отделов среднего мозга. Однако еще имеет место несовершенство в координации движений пальцев рук и ребенку с большим трудом даются такие двигательные навыки как рисование, письмо.

На IIIэтапе заканчивается дифференцировкаретикулярной формацииствола мозга и заканчивает свое развитиемозжечок.

В промежуточном мозгедифференцировка еще не закончена. Подкорковые ядра составляют 80% от взрослых и в них также не закончена дифференцировка нейронов и миелинизация аксонов.

Вес головного мозгадостигает 1250 г. По своей формебольшие полушарияпочти такие же, как у взрослых. Отличие заключается в том, что лобные доли еще относительно меньше развиты. На этом этапе заканчивается дифференцировка тел и дендритов корковых нейронов. Однако их аксоны еще не полностью покрыты миелиновой оболочкой. Функциональная незрелость коры больших полушарий проявляется в относительной слабости процессов торможения и в относительной легкости иррадиации процессов возбуждения (ребенок быстро перевозбуждается во время игры, плохо засыпает, спит беспокойно).

Нет еще контроля коры над эмоциями.

IV этап. На протяженииIVэтапа развития ребенка заканчивается дифференцировка и миелинизация всех отделов ЦНС и проводящих путей, которые еще не закончили своего развития на предыдущем этапе. К концу этапа все отделы ЦНС морфологически такие же, как у взрослых людей.

К 9-10 годам все головного мозга достигает 1350 г (у взрослых 1400-1600 г).

На этом этапе еще имеется относительная недоразвитость лобных долей больших полушарий. В этом возрасте мышление у детей все еще остается конкретным, хотя они уже начинают пользоваться абстрактными понятиями. Поэтому преподавание должно строиться не только на словесном логическом объяснении, но обязательно с использованием наглядностей (таблицы. рисунки, опыты), с обязательным знакомством ребенка с конкретными явлениями и предметами. Несмотря на морфологическую и функциональную незрелость больших полушарий, данный этап характеризуется довольно совершенной функцией коры головного мозга. Кора больших полушарий берет под контроль эмоции.

V этап.В 12-13 лет вес головного мозга достигает 1400 г. Отмечается усиленный рост лобных долей. Процессы возбуждения преобладают над процессами торможения. Только к 13-16 годам заканчивается рост лобных долей, вес головного мозга достигает массы взрослого. Усиливаются процессы торможения. К 17-18 годам морфологическое развитие больших полушарий заканчивается, но функциональное совершенствование продолжается и у взрослых людей.

Центральная нервная система: структура, функции и заболевания

Центральная нервная система состоит из головного и спинного мозга. Его называют «центральным», потому что он объединяет информацию от всего тела и координирует деятельность всего организма.

В этой статье дается краткий обзор центральной нервной системы (ЦНС). Мы рассмотрим типы вовлеченных клеток, различные области мозга, спинномозговые цепи и то, как болезни и травмы могут повлиять на ЦНС.

Краткие сведения о центральной нервной системе

Вот некоторые ключевые моменты, касающиеся центральной нервной системы. Более подробная и вспомогательная информация находится в основной статье.

  • ЦНС состоит из головного и спинного мозга.
  • Мозг — это самый сложный орган в организме, который использует 20 процентов общего количества кислорода, которым мы дышим.
  • Мозг состоит из примерно 100 миллиардов нейронов, каждый из которых связан с тысячами других.
  • Головной мозг можно разделить на четыре основные доли: височную, теменную, затылочную и лобную.

ЦНС состоит из головного и спинного мозга.

Головной мозг защищен черепом (полостью черепа), и спинной мозг проходит от задней части мозга вниз по центру позвоночника, останавливаясь в поясничной области нижней части спины.

Головной и спинной мозг расположены внутри защитной трехслойной мембраны, называемой мозговыми оболочками.

Центральная нервная система была тщательно изучена анатомами и физиологами, но до сих пор хранит много секретов; он контролирует наши мысли, движения, эмоции и желания.Он также контролирует наше дыхание, частоту сердечных сокращений, выброс некоторых гормонов, температуру тела и многое другое.

Сетчатка, зрительный нерв, обонятельные нервы и обонятельный эпителий иногда считаются частью ЦНС наряду с головным и спинным мозгом. Это связано с тем, что они напрямую соединяются с тканями мозга без промежуточных нервных волокон.

Ниже представлена ​​трехмерная карта CMS. Нажмите на нее, чтобы взаимодействовать и исследовать модель.

Теперь мы рассмотрим некоторые части ЦНС более подробно, начиная с мозга.

Мозг — самый сложный орган человеческого тела; Кора головного мозга (наиболее удаленная часть мозга и самая большая часть по объему) содержит примерно 15–33 миллиардов нейронов, каждый из которых связан с тысячами других нейронов.

Всего мозг человека составляет около 100 миллиардов нейронов и 1 000 миллиардов глиальных (поддерживающих) клеток. Наш мозг использует около 20 процентов всей энергии нашего тела.

Мозг является центральным управляющим модулем тела и координирует деятельность.От физического движения до секреции гормонов, создания воспоминаний и ощущения эмоций.

Для выполнения этих функций некоторым отделам мозга отведены специальные роли. Однако многие высшие функции — рассуждение, решение проблем, творчество — включают в себя различные области совместной работы в сетях.

Головной мозг примерно разделен на четыре доли:

Височная доля (зеленый): важна для обработки сенсорной информации и придания ей эмоционального значения.

Он также участвует в формировании долгосрочных воспоминаний. Здесь также размещены некоторые аспекты восприятия языка.

Затылочная доля (пурпурный): область обработки изображений головного мозга, в которой находится зрительная кора.

Теменная доля (желтая): Теменная доля объединяет сенсорную информацию, включая прикосновение, пространственное восприятие и навигацию.

Кожная стимуляция прикосновением в конечном итоге направляется на теменную долю. Он также играет роль в языковой обработке.

Фронтальная доля (розовая): расположена в передней части мозга, лобная доля содержит большинство дофамин-чувствительных нейронов и участвует в внимании, вознаграждении, краткосрочной памяти, мотивации и планировании.

Области мозга

Далее мы рассмотрим некоторые конкретные области мозга более подробно:

Базальные ганглии: участвуют в контроле произвольных двигательных движений, процедурном обучении и принятии решений о том, какую двигательную активность выполнять. ,Заболевания, поражающие эту область, включают болезнь Паркинсона и болезнь Хантингтона.

Мозжечок: в основном участвует в точном моторном контроле, но также в речи и внимании. Если мозжечок поврежден, основным симптомом является нарушение моторного контроля, известное как атаксия.

Область Брока: Эта небольшая область в левой части мозга (иногда справа у левшей) важна для обработки речи. При повреждении человеку трудно говорить, но он все еще может понимать речь.Заикание иногда связано с недостаточной активностью зоны Брока.

мозолистое тело: широкая полоса нервных волокон, соединяющая левое и правое полушария. Это самая большая структура белого вещества в мозгу, которая позволяет двум полушариям общаться. У детей с дислексией мозолистое тело меньше; левши, амбидекстры и музыканты обычно бывают крупнее.

Продолговатый мозг: простирается ниже черепа, он участвует в непроизвольных функциях, таких как рвота, дыхание, чихание и поддержание правильного кровяного давления.

Гипоталамус: , расположенный прямо над стволом мозга и размером примерно с миндаль, гипоталамус секретирует ряд нейрогормонов и влияет на контроль температуры тела, жажду и голод.

Таламус: расположен в центре мозга, таламус получает сенсорную и моторную информацию и передает ее остальной части коры головного мозга. Он участвует в регулировании сознания, сна, осведомленности и бдительности.

Миндалевидное тело: два миндалевидных ядра глубоко в височной доле.Они участвуют в принятии решений, памяти и эмоциональных реакциях; особенно отрицательные эмоции.

Поделиться на PinterestСпинной мозг передает информацию от мозга к остальным частям тела.

Спинной мозг, проходящий почти по всей длине спины, передает информацию между мозгом и телом, но также выполняет другие задачи.

Из ствола головного мозга, где спинной мозг встречается с головным мозгом, 31 спинной нерв входит в мозг.

По своей длине он соединяется с нервами периферической нервной системы (ПНС), которые проходят через кожу, мышцы и суставы.

Моторные команды от головного мозга передаются от позвоночника к мышцам, а сенсорная информация передается от сенсорных тканей, таких как кожа, к спинному мозгу и, наконец, к головному мозгу.

Спинной мозг содержит цепи, которые управляют определенными рефлексивными реакциями, такими как непроизвольное движение, которое ваша рука может сделать, если ваш палец коснется пламени.

Цепи в позвоночнике также могут генерировать более сложные движения, такие как ходьба. Даже без участия головного мозга спинномозговые нервы могут координировать работу всех мышц, необходимых для ходьбы.Например, если мозг кошки отделен от позвоночника, так что ее мозг не контактирует с телом, она начнет спонтанно ходить, когда ее поместят на беговую дорожку. Мозгу требуется только остановить и запустить процесс или внести изменения, если, например, на вашем пути появляется объект.

ЦНС можно условно разделить на белое и серое вещество. Как правило, мозг состоит из внешней коры серого вещества и внутренней области, содержащей участки белого вещества.

Оба типа тканей содержат глиальные клетки, которые защищают и поддерживают нейроны.Белое вещество в основном состоит из аксонов (нервных отростков) и олигодендроцитов — типа глиальных клеток, тогда как серое вещество состоит преимущественно из нейронов.

Также называемые нейроглией, глиальные клетки часто называют опорными клетками для нейронов. В головном мозге их больше, чем нервных клеток, от 10 до 1.

Без глиальных клеток развивающиеся нервы часто теряют свой путь и изо всех сил пытаются сформировать функционирующие синапсы.

Глиальные клетки обнаруживаются как в ЦНС, так и в ПНС, но каждая система имеет разные типы.Ниже приводится краткое описание типов глиальных клеток ЦНС:

Астроциты: эти клетки имеют многочисленные выступы и прикрепляют нейроны к кровоснабжению. Они также регулируют местную среду, удаляя избыточные ионы и перерабатывая нейротрансмиттеры.

Олигодендроциты: отвечают за создание миелиновой оболочки — этот тонкий слой покрывает нервные клетки, позволяя им посылать сигналы быстро и эффективно.

Эпендимные клетки: , выстилающие спинной мозг и желудочки мозга (заполненные жидкостью пространства), они создают и секретируют спинномозговую жидкость (CSF) и поддерживают ее циркуляцию с помощью своих хлыстоподобных ресничек.

Радиальная глия: действует как каркас для новых нервных клеток во время создания нервной системы эмбриона.

Черепные нервы — это 12 пар нервов, которые выходят непосредственно из головного мозга и проходят через отверстия в черепе, а не проходят по спинному мозгу. Эти нервы собирают и отправляют информацию между мозгом и частями тела, в основном шеей и головой.

Из этих 12 пар обонятельные и зрительные нервы отходят от переднего мозга и считаются частью центральной нервной системы:

Обонятельные нервы (черепной нерв I): передают информацию о запахах из верхней части носовой полости. к обонятельным луковицам на основании мозга.

Зрительные нервы (черепной нерв II): переносят визуальную информацию от сетчатки к первичным зрительным ядрам мозга. Каждый зрительный нерв состоит примерно из 1,7 миллиона нервных волокон.

Ниже приведены основные причины заболеваний, поражающих ЦНС:

Травма: В зависимости от места травмы симптомы могут широко варьироваться от паралича до расстройства настроения.

Инфекции: некоторые микроорганизмы и вирусы могут проникать в ЦНС; к ним относятся грибы, такие как криптококковый менингит; простейшие, включая малярию; бактерии, как в случае с проказой, или вирусы.

Дегенерация: В некоторых случаях спинной или головной мозг может дегенерировать. Одним из примеров является болезнь Паркинсона, при которой происходит постепенная дегенерация дофамин-продуцирующих клеток в базальных ганглиях.

Структурные дефекты: наиболее частыми примерами являются врожденные дефекты; включая анэнцефалию, при которой части черепа, головного мозга и скальпа отсутствуют при рождении.

Опухоли: Раковые и доброкачественные опухоли могут поражать части центральной нервной системы.Оба типа могут вызывать повреждения и вызывать множество симптомов в зависимости от того, где они развиваются.

Аутоиммунные расстройства: В некоторых случаях иммунная система человека может атаковать здоровые клетки. Например, острый диссеминированный энцефаломиелит характеризуется иммунным ответом на головной и спинной мозг, атакующим миелин (изоляцию нервов) и, следовательно, разрушающим белое вещество.

Инсульт: Инсульт — это нарушение кровоснабжения головного мозга; в результате нехватка кислорода приводит к гибели тканей в пораженной области.

Различия между ЦНС и периферической нервной системой

Термин «периферическая нервная система» (ПНС) относится к любой части нервной системы, которая находится за пределами головного и спинного мозга. ЦНС отделена от периферической нервной системы, хотя эти две системы взаимосвязаны.

Между CNS и PNS существует ряд различий; одно отличие — размер ячеек. Нервные аксоны ЦНС — тонкие выступы нервных клеток, передающих импульсы, — намного короче.Аксоны нерва ПНС могут иметь длину до 1 метра (например, нерв, который активирует большой палец ноги), тогда как в ЦНС они редко бывают длиннее нескольких миллиметров.

Еще одно важное различие между ЦНС и ПНС заключается в регенерации (повторном росте клеток). Большая часть ПНС обладает способностью к регенерации; Если нерв на пальце поврежден, он может отрасти заново. ЦНС, однако, не обладает такой способностью.

Компоненты центральной нервной системы подразделяются на множество частей.Ниже мы опишем некоторые из этих разделов более подробно.

Анатомия нервной системы

Назначение нервной системы — передача сигналов между мозгом и остальным телом. Нервная система регулирует все, что мы делаем, произвольно и непроизвольно.

Каждая сенсорная и когнитивная функция, которую вы используете сейчас для интерпретации информации в этой статье — зрение, память, возможно, даже движение, если вы делаете записи, — контролируется нервной системой.

Есть два основных отдела нервной системы: центральная нервная система (ЦНС) и периферическая нервная система (ПНС).

Центральная нервная система состоит из головного мозга, спинного мозга и сетчатки и контролирует практически все функции, которые поддерживают вас и позволяют вам жить.

Все сенсорные процессы, регуляция систем органов, таких как сердечно-сосудистая система, и высшие когнитивные функции уходят корнями в ЦНС.

Функция периферической нервной системы Система, по сути, предназначена для получения и распространения информации, чтобы помочь ЦНС принимать решения о том, как реагировать на окружающую среду.

Основные функции нервной системы

Одна из основных функций нервной системы. Система предназначена для регулирования процессов следующих категорий:

Двигатель : регулируется эфферентные нейроны, двигательная система охватывает движение всех мышц ткани, как произвольные, так и непроизвольные.

Сенсорное : сенсорная информация интерпретируется через слух, зрение, пространственное восприятие, временное восприятие, температуру, вкус, осязание и запах.

В значительной степени регулируется афферентными нейронами, сенсорная информация отправляется в ЦНС, которая принимает решения на основе этих нейротрансмиссий и соответствующим образом направляет системы органов.

Автоматический : это в основном относится к процессам, которые регулируются не мозгом, а путем, называемым рефлекторной дугой. Рефлексы — это обычно двигательные реакции, которые должны происходить очень быстро, поэтому прохождение через мозг на самом деле было бы недостатком.

Вместо этого стимулируются сенсорные рецепторы ПНС, а затем передаются сигналы определенному двигательному нейрону через спинной мозг.Затем этот сигнал активирует целевую мышцу или орган, чтобы они совершили необходимое движение.

Отделы нервной системы

В среднем человеческом мозгу существует более 100 триллионов нейронных связей, и все они постоянно взаимодействуют через синапсы.

Этим синапсам требуется всего лишь доля миллисекунды, чтобы передать данный электрический импульс через спинной мозг — по оценкам, он движется со скоростью 268 миль в час!

Способ организации и соединения этих синапсов зависит от конкретной подсистемы, к которой они относятся.

Черепная нервная система

Это нервы, которые соединяют мозг с глазами, ушами, ртом и другими органами чувств головы. Двенадцать пар нервов составляют черепную нервную систему.

Периферическая нервная система .

Эта подсистема состоит из сенсорных нейронов, ганглиев, (кластеров нейронов) и нервов, которые соединяют центральную нервную систему с руками, руками, ногами и ступнями. Тридцать одна пара нервов составляет периферическую нервную систему.

Автономная нервная система

Это совокупность нервов, которые соединяют центральную нервную систему с легкими, сердцем, желудком, кишечником, мочевым пузырем и половыми органами.

Центральная нервная система

Состоит из головного, спинного мозга и сетчатки. «Командный центр» тела.

Строительные блоки нервной системы

Строительным блоком нервной системы является нейрон. (Забавный факт: человеческий мозг содержит примерно 100 миллиардов нейронов.Это более чем в 14 раз больше, чем сейчас на планете Земля!)

Анатомия нейрона может немного отличаться в зависимости от его функции, но структуры, из которых он состоит, остаются прежними.

Другой тип ячеек, центральный Функционирование нервной системы (каламбур) — это глиальная клетка. Глиальные клетки

  1. Поддерживают и удерживают нейроны на месте
  2. Защищают нейроны
  3. Создают миелин, который помогает перемещать нервные импульсы
  4. Восстанавливают нейроны и помогают восстановить функцию нейронов
  5. Обрезать мертвые нейроны
  6. Регулировать нейротрансмиттеры

Анатомия нейронов

Нейрон состоит из следующих частей (NICHD, 2018):

  • Ядро
  • Тело клетки
  • Дендрит: отвечает за получение информации через синапсы для обработки клеткой и отправки через аксон через терминал аксона в синапс для повторной передачи
  • Axon: «коридор», по которому сенсорная информация передается дендриту для передачи другому нейрону.(Термин «нерв» не относится к нейрону, хотя кажется, что так и должно быть. На самом деле он означает совокупность нескольких аксонов — это совокупность аксонов, которые работают вместе как коллектив. группа стеблей спаржи образует один пучок спаржи, пучок аксонов составляет один нерв. Различные типы нервов — шейные, грудные, поясничные и крестцовые нервы.)
  • Миелиновая оболочка: жировая ткань, которая изолирует аксон посредством предотвращение деполяризации.Это позволяет электрическим импульсам беспрепятственно проходить через аксон.
  • Узел Ранвье: это промежутки в миелиновой оболочке. Их функция заключается в ускорении распространения потенциалов действия по аксону посредством скачкообразной проводимости. (Поскольку эти промежутки не миелинизированы, кажется, что потенциалы действия прыгают между узлами, как фонтаны в мире Диснея.) Соляная проводимость также помогает сохранять энергию, уменьшая необходимое движение ионов в 100 раз.
  • Терминал аксона: конец аксона, последняя остановка перед передачей электрических импульсов через синапс.Эта структура преобразует электрические импульсы в химические сигналы, которые при высвобождении называются нейротрансмиттерами. Нейротрансмиттеры проходят через синапс к следующему дендриту и затем преобразуются обратно в электрический импульс, чтобы повторять этот процесс, пока он не достигнет нужного органа.

Типы нейронов

Существует четыре различных типа нейронов . Их анатомия определяется тем, какие типы информации им необходимо передавать, в какие органы и в какие области тела.

На самом деле, только в головном мозге существует так много различных типов нейронов, что они еще не все описаны. Это связано с тем, что нейроны в головном мозге будут различаться в зависимости от того, с какой частью целевого нейрона они взаимодействуют (дендрит или аксон), экспрессируют разные гены, выражают различные электрические импульсы и еще несколько различий.

Типы нейронов приведены ниже:

  • Униполярный
  • Биполярный
  • Псевдоуполярный
  • Мультиполярный

Нейроны в спинном мозге — это сенсорные и двигательные нейроны.Сенсорные нейроны активируются сенсорным входом из окружающей среды (прикосновение, вкус, запах, звук, зрение). Поступление информации из внешней среды может быть физическим или химическим и соответствовать всем пяти чувствам. Большинство сенсорных нейронов псевдоуниполярны.

Моторные нейроны спинного мозга являются частью ЦНС и соединяются с мышцами, железами и органами по всему телу. Они передают импульсы от спинного мозга к тканям скелета и гладких мышц на основе информации, собранной сенсорными нейронами.Обычно они многополюсны.

Нижние двигательные нейроны проходят от спинного мозга к мышцам, а верхние двигательные нейроны проходят от головного и спинного мозга к дистальным частям тела.

Наконец, интернейронов . Они служат связями между спинными, моторными и сенсорными нейронами и взаимодействуют друг с другом, образуя сети по всему телу, структура которых различается в зависимости от потребности и системы органов. Эти нейроны тоже мультиполярны.

Центральная нервная система

Высшие функции нервной системы также называемые «исполнительными функциями», они контролируются мозгом. К ним относятся:

Познание : мышление, обучение, память, язык, понимание, создание и планирование целей. Познание в первую очередь контролируется лобной долей и отличает людей от всех видов на Земле в его эволюционном развитии.

Эмоции : контролируемые эмоции могут влиять на то, где в мозгу воспоминания хранятся и то, как они вспоминаются.Эмоции контролируются из много разных систем органов, причем ЦНС — только одна. Гиппокамп и миндалина — две структуры нервной системы, участвующие в регулирование эмоций.

Сознание : в основном сосредоточенный в мозжечке, сознание — это когнитивный навык, который все еще очень плохо понимается учеными, но занимает центральное место в том, что отличает людей от много видов.

Анатомия ЦНС

ЦНС состоит из головного и спинного мозга. шнур и сетчатка.

Основными компонентами мозга являются головной мозг, полушарие головного мозга, ствол мозга и мозжечок.

Анатомическая структура Задний мозг / средний мозг / передний мозг
головной мозг передний мозг
полушария головного мозга (слева и справа) Передний мозг
Ствол мозга Средний мозг, задний мозг
Мозжечок Задний мозг

спинной мозг является точкой перехода между PNS и CNS.Это связано с тем, что нервы периферической нервной системы используют спинной мозг для непосредственной связи с мозгом, чтобы контролировать остальную часть тела.

Пары нервов отходят от боковых сторон позвоночного столба и проходят через дистальные области тела. К этим нервам прикреплены ганглии, содержащие сомы нейронов.

Нейроны, составляющие спинной Шнура известны как афферентные и эфферентные нейроны. Афферентные нейроны несут информация с по центральная нервная системы, в то время как эфферентные нейроны несут информацию от от центральной нервной системы к периферической нервной системе. система на основе полученного сообщения.

Периферийная нервная система

PNS более прост, чем ЦНС, слава богу. Он состоит из пар нервов, которые отходят от спинного мозга и проходят по всему телу.

Есть двенадцать пар черепных нервов и 31 пара спинномозговых нервов, все из которых служат для формирования сетей связи между мозгом и всеми другими органами тела.

Ссылки
  1. Квинслендский институт мозга.(2017, 15 декабря). Спинной мозг. Получено с https://qbi.uq.edu.au/brain/brain-anatomy/spinal-cord
  2. Квинслендский институт мозга. (2018, 26 марта). Типы нейронов. Получено с https://qbi.uq.edu.au/brain/brain-anatomy/types-neurons
  3. Queensland Brain Institute. (2018, 17 июля). Центральная нервная система: головной и спинной мозг. Получено с https://qbi.uq.edu.au/brain/brain-anatomy/central-nervous-system-brain-and-spinal-cord
  4. Toro, R.(2013, 5 августа). Схема нервной системы человека (инфографика). Получено с https://www.livescience.com/27975-human-body-system-the-nervous-system-infographic.html
  5. Циммерманн, К. А. (14 февраля 2018 г.). Нервная система: факты, функции и болезни. Получено с https://www.livescience.com/22665-nervous-system.html
.
нервной системы человека | Описание, развитие, анатомия и функции

Пренатальное и постнатальное развитие нервной системы человека

Почти все нервные клетки или нейроны генерируются во время пренатальной жизни, и в большинстве случаев после этого они не заменяются новыми нейронами. Морфологически нервная система впервые появляется примерно через 18 дней после зачатия с образованием нервной пластинки. Функционально он появляется с первым признаком рефлекторной активности во втором пренатальном месяце, когда стимуляция прикосновением к верхней губе вызывает реакцию отдергивания головы.Многие рефлексы со стороны головы, туловища и конечностей могут появиться на третьем месяце.

В процессе своего развития нервная система претерпевает значительные изменения, чтобы достичь своей сложной организации. Чтобы произвести приблизительно 1 триллион нейронов, присутствующих в зрелом мозге, в среднем необходимо генерировать 2,5 миллиона нейронов в минуту в течение всей пренатальной жизни. Это включает формирование нейронных цепей, содержащих 100 триллионов синапсов, поскольку каждый потенциальный нейрон в конечном итоге связан либо с выбранным набором других нейронов, либо с конкретными целями, такими как сенсорные окончания.Более того, синаптические связи с другими нейронами устанавливаются в определенных местах на клеточных мембранах целевых нейронов. Совокупность этих событий не считается исключительно продуктом генетического кода, поскольку генов просто не хватает, чтобы объяснить такую ​​сложность. Скорее, дифференциация и последующее развитие эмбриональных клеток в зрелые нейроны и глиальные клетки достигаются двумя наборами влияний: (1) специфическими подмножествами генов и (2) стимулами окружающей среды внутри и вне эмбриона.Генетические влияния имеют решающее значение для развития нервной системы в упорядоченной и временной последовательности. Клеточная дифференцировка, например, зависит от серии сигналов, которые регулируют транскрипцию — процесса, в котором молекулы дезоксирибонуклеиновой кислоты (ДНК) дают начало молекулам рибонуклеиновой кислоты (РНК), которые, в свою очередь, выражают генетические сообщения, контролирующие клеточную активность. Влияния окружающей среды, происходящие от самого эмбриона, включают клеточные сигналы, которые состоят из диффузных молекулярных факторов ( см. Ниже Развитие нейронов).К факторам внешней среды относятся питание, сенсорный опыт, социальное взаимодействие и даже обучение. Все это важно для правильной дифференциации отдельных нейронов и тонкой настройки синаптических связей. Таким образом, нервная система требует непрерывной стимуляции в течение всей жизни для поддержания функциональной активности.

Развитие нейронов

На второй неделе пренатальной жизни быстро растущая бластоциста (связка клеток, на которую делится оплодотворенная яйцеклетка) превращается в так называемый эмбриональный диск.Эмбриональный диск вскоре приобретает три слоя: эктодерму (внешний слой), мезодерму (средний слой) и энтодерму (внутренний слой). Внутри мезодермы растет хорда, осевой стержень, который служит временным позвоночником. И мезодерма, и хорда выделяют химическое вещество, которое инструктирует и побуждает соседние недифференцированные клетки эктодермы утолщаться вдоль того, что станет дорсальной средней линией тела, образуя нервную пластинку. Нервная пластинка состоит из нервных клеток-предшественников, известных как нейроэпителиальные клетки, которые развиваются в нервную трубку ( см. Ниже Морфологическое развитие).Затем нейроэпителиальные клетки начинают делиться, диверсифицироваться и давать начало незрелым нейронам и нейроглии, которые, в свою очередь, мигрируют из нервной трубки в свое окончательное местоположение. Каждый нейрон образует дендриты и аксон; аксоны удлиняются и образуют ветви, концы которых образуют синаптические связи с выбранным набором целевых нейронов или мышечных волокон.

Человеческое эмбриональное развитие Развитие человеческого эмбриона на 18-й день, на стадии диска или щита, показано на (слева) трехчетвертном виде и (справа) в поперечном сечении. Encyclopdia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Замечательные события этого раннего развития включают упорядоченную миграцию миллиардов нейронов, рост их аксонов (многие из которых широко распространяются по всему мозгу) и формирование тысяч синапсов между отдельными аксонами и их целевыми нейронами. Миграция и рост нейронов зависят, по крайней мере частично, от химических и физических воздействий.Растущие концы аксонов (называемые конусами роста), по-видимому, распознают и реагируют на различные молекулярные сигналы, которые направляют аксоны и нервные ветви к своим соответствующим целям и устраняют те, которые пытаются синапсировать с неподходящими целями. Как только синаптическая связь установлена, клетка-мишень высвобождает трофический фактор (например, фактор роста нервов), который необходим для выживания нейрона, синапсирующегося с ней. Сигналы физического наведения участвуют в наведении контактов или миграции незрелых нейронов по каркасу из глиальных волокон.

В некоторых регионах развивающейся нервной системы синаптические контакты изначально не являются точными или стабильными, и позже за ними следует упорядоченная реорганизация, включающая устранение многих клеток и синапсов. Нестабильность некоторых синаптических связей сохраняется до тех пор, пока не будет достигнут так называемый критический период, до которого влияние окружающей среды играет значительную роль в правильной дифференцировке нейронов и в тонкой настройке многих синаптических связей. После критического периода синаптические связи становятся стабильными и вряд ли будут изменены под влиянием окружающей среды.Это говорит о том, что на определенные навыки и сенсорную деятельность можно повлиять во время развития (включая послеродовую жизнь), а для некоторых интеллектуальных навыков эта способность к адаптации предположительно сохраняется во взрослой жизни и в конце жизни.

Знакомство с нервной системой

Организация нервной системы

Нервная система — это сеть клеток, называемых нейронами, которые координируют действия и передают сигналы между различными частями тела.

Цели обучения

Опишите организацию нервной системы

Основные выводы

Ключевые моменты
  • Нейроны (специализированные клетки нервной системы) посылают сигналы по тонким волокнам, называемым аксонами, и связываются с другими клетками, высвобождая химические вещества, называемые нейротрансмиттерами, в межклеточных соединениях, называемых синапсами.
  • Глиальные клетки — это ненейрональные клетки, которые обеспечивают поддержку и питание нервной системы.
  • У человека нервная система состоит из центральной и периферической нервных систем.
  • Центральная нервная система человека включает головной, спинной мозг и сетчатку.
  • Периферическая нервная система состоит из сенсорных нейронов, кластеров нейронов, называемых ганглиями, и нервов, соединяющих их друг с другом и с центральной нервной системой.
Ключевые термины
  • сенсорный рецептор : нервное окончание, распознающее раздражитель во внутренней или внешней среде организма.
  • Периферическая нервная система : Эта система состоит из нервов и ганглиев вне головного и спинного мозга.
  • глия : ненейрональные клетки, которые поддерживают гомеостаз, образуют миелин и обеспечивают поддержку и защиту нейронов в головном мозге и других частях нервной системы.

Примеры

Нервная система позволяет нам реагировать на изменяющуюся среду вокруг нас.

Нервная система — это система органов, которая координирует произвольные и непроизвольные действия и реакции путем передачи сигналов между различными частями нашего тела.

Нейроны

Центральным элементом функционирования нервной системы является обширная сеть специализированных клеток, называемых нейронами. Нейроны имеют множество тонких выступающих волокон, называемых аксонами, которые проникают глубоко в ткани. Они могут связываться с другими клетками химическими или электрическими средствами в синапсах. Функция нейронов поддерживается нейроглией, специализированными клетками, которые обеспечивают питание, механическую поддержку и защиту.

Основные элементы в коммуникации нейрон-нейрон : электрические импульсы проходят по аксону нейрона.Когда этот сигнал достигает синапса, он вызывает выброс n

.

Комментировать

Ваш адрес email не будет опубликован. Обязательные поля помечены *