Мышечная система это – Мышечная система человека. Все, что надо знать

Содержание

Мышечная система человека. Все, что надо знать

И снова здравствуйте! На связи все те же и все там же :). В эту пятницу мы продолжим свой эпический цикл заметок. И следующая тема к рассмотрению «Мышечная система человека». По прочтении вы узнаете, что она собой представляет, как работает и что с происходит с мышцами во время выполнения упражнений.

Итак, занимайте свои места в зрительном зале, мы начинаем.

Мышечная система человека: что, к чему и почему?

На протяжении всего апреля и мая мы рассказываем вам про системы человека. На текущий момент разобрали: сердечно-сосудистую, пищеварительную, нервную, лимфатическую, иммунную и эндокринную системы. Если вы к нам только что присоединились, то изучите сначала указанные заметки, и только потом переходите к нашей новой теме. Статья обещает быть, не в пример предыдущим, простой и понятной, а все потому, что про мышцы мы уже в свое время многое сказали. И сегодня нам останется все вспомнить и подвести общий знаменатель. Что же, давайте приступим к вещанию.

Примечание:
Для лучшего усвоения материала все дальнейшее повествование будет разбито на подглавы.

“Анатомия” мышечной системы

Мышечная система — это сеть тканей организма, которая контролирует движения тела и внутри него. Движение создается за счет сокращения и расслабления определенных мышц. Мышцы подразделяются на два основных класса: скелетные (произвольные) и гладкие (непроизвольные).

Скелетные мышцы прикрепляются к скелету и движутся различными частями тела. Их называют добровольными, потому что человек контролирует их использование, например, при сгибании руки или подъеме ноги. В теле человека насчитывается около 650 скелетных мышц. Анатомический атлас основных из них представляет собой такую картину (кликабельно):

Гладкие мышцы находятся в стенках желудка и кишечника, стенок вен и артерий, а также в различных внутренних органах. Их называют непроизвольными мышцами, потому что человек обычно не может их сознательно контролировать. Они регулируются вегетативной нервной системой. Еще одно различие между скелетными и гладкими мышцами заключается в том, что скелетные мышцы состоят из волокон ткани, которые имеют полосатую бороздчатую структуру. Эти чередующиеся полосы света и темноты являются результатом рисунка волокон (нитей) в каждой мышечной клетке. Гладкие мышечные волокна не исчерчены.

Сердечная (миокард) — уникальный тип мышц, который не относится ни к одному из двух классов мышц. Как скелетные мышцы, миокард является поперечной. Но, как и гладкие мышцы, он непроизвольно контролируются вегетативной нервной системой:

Давайте кратко разберем гладкие и сердечную мышцы и максимально подробно скелетные.

№1. Гладкие мышцы

Гладкие мышечные волокна выстилают большую часть внутренних полых органов тела. Они помогают перемещать вещества через кровеносные сосуды и тонкий кишечник. Гладкие мышцы сокращаются автоматически, спонтанно и часто ритмично. Они сокращаются медленнее, чем скелетные мышцы, однако могут оставаться сокращенными более продолжительное время.

Подобно скелетным мышцам, гладкие мышцы сокращаются в ответ на высвобождение нейротрансмиттеров, релизуемых нервами. В отличие от скелетных мышц, некоторые гладкие мышцы сокращаются после стимуляции гормонами. Примером является окситоцин — гормон, выделяемый гипофизом. Он стимулирует сокращение гладких мышц матки во время родов. Гладкие мышцы не так зависимы от кислорода, как скелетные мышцы, они используют углеводы для выработки большей части своей энергии.

№2. Сердечная мышца

При средней продолжительности жизни человека 65-70 лет, миокард за этот период сокращается более чем 2,5 млрд. раз. Как и скелетные мышцы, миокард является поперечно-полосатым. Однако волокна миокарда меньше и короче волокон скелетных мышц. Сокращения миокарда стимулируются импульсом, исходящим из небольшого скопления (узла) — специализированной ткани в верхней правой части сердца. Импульс распространяется через верхнюю область сердца, заставляя ее сокращаться. Этот импульс также достигает другого узла, расположенного вблизи нижней правой области сердца. После получения начального импульса второй узел запускает свой собственный импульс, в результате чего нижняя область сердца несколько сокращается следом за верхней областью. Другими словами, миокард стимулирует к сокращению сам себя, гормоны и сигналы мозга регулируют лишь скорость сокращения.

Клетки сердечной мышцы представляют собой разветвленные X или Y-образные клетки, плотно соединенные между собой специальными соединениями, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидных выступов двух соседних клеток, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому кровяному давлению и перекачиванию крови на протяжении всей жизни. Эти функции также помогают быстро распространять электрохимические сигналы от клетки к клетке, чтобы сердце могло биться как единое целое.

На очереди…

№3. Скелетные мышцы

Разберем как вопросы анатомии, так и управление мышцами и иннервации мышечных волокон.

№3.1 Общая анатомия

Составляют около 40% массы тела. Они стабилизируют суставы, помогают поддерживать осанку и придают телу общую форму. Используют много кислорода и питательных веществ из кровоснабжения. Скелетные мышцы способствуют поддержанию гомеостаза в организме, выделяя тепло. Мышечное сокращение требует энергии, и когда АТФ разрушается, выделяется тепло. Это тепло проявляет себя во время физических упражнений, когда устойчивые движения мышц вызывают повышение температуры тела.

Каждая скелетная мышца представляет собой орган, состоящий из различных интегрированных тканей. Эти ткани включают волокна скелетных мышц, кровеносные сосуды, нервные волокна и соединительную ткань. Каждая скелетная мышца имеет три слоя соединительной ткани (называемой «мизия»), которая охватывает ее и обеспечивает структуру мышцы в целом, а также разделяет мышечные волокна внутри мышцы.

Каждая мышца обернута в плотную соединительную ткань, называемую эпимизией, которая позволяет мышце сокращаться и мощно двигаться, сохраняя при этом свою структурную целостность. Эпимизия также отделяет мышцу от других тканей и органов, что позволяет мышце двигаться самостоятельно.

Внутри каждой скелетной мышцы мышечные волокна организованы в отдельные пучки средним слоем соединительной ткани — перимизиумом. Эта фасцикулярная организация распространена в мышцах конечностей, что позволяет нервной системе запускать определенное движение мышцы, активируя подмножество мышечных волокон в пучке. Внутри каждого пучка каждое мышечное волокно заключено в тонкий слой соединительной ткани из коллагена и ретикулярных волокон, называемый эндомизием. Эндомизий содержит внеклеточную жидкость и питательные вещества для поддержки мышечного волокна. Эти питательные вещества поступают через кровь к мышечной ткани.

Скелетные мышцы прикрепляются к костям с помощью жесткой волокнистой соединительной ткани, называемой сухожилиями. Сухожилия богаты коллагеном, который может растягиваться и обеспечивать дополнительную длину в соединении мышц и костей.

Скелетные мышцы действуют парами. Мышца, которая производит конкретное движение тела, известна как агонист — первичный двигатель. Агонист всегда соединяется с мышцей-антагонистом, которая оказывает противоположный эффект. Сгибание (сокращение) одной мышцы уравновешивается удлинением (расслаблением) ее парной мышцы или группы мышц. Эти антагонистические (противоположные) мышцы могут открывать и закрывать суставы. Примером антагонистических мышц являются бицепс и трицепс. Когда мышца бицепса сгибается, предплечье сгибается в локте к бицепсу, в то же самое время мышца трицепса удлиняется. Когда предплечье согнуто назад в положении прямой руки, бицепс удлиняется, а трицепс сгибается.

Мышцы, которые сокращаются и приводят к закрытию сустава, называются мышцами-сгибателями. Мышцы, которые сокращаются и приводят к открытию сустава, называются экстензорами. Скелетные мышцы, поддерживающие череп, позвоночник и грудную клетку, называются осевыми скелетными мышцами. Скелетные мышцы конечностей называются дистальными скелетными мышцами.

Синергисты — это мышцы, которые помогают стабилизировать и уменьшить посторонние движения. Они обычно находятся рядом с мышцами-агонистами и часто соединяются с теми же костями. Если вы поднимаете что-то тяжелое руками, фиксаторы в области туловища удерживают ваше тело в вертикальном положении неподвижно, так что вы сохраняете равновесие во время подъема.

При выполнении какого-либо движения в работу включаются до пяти групп мышц: агонисты, антагонисты, синергисты, стабилизаторы и нейтрализаторы. Например, во время жима штанги трицепс и передняя дельта выступают в роли синергистов (бицепс в роли динамического стабилизатора), а при выполнении отведения руки назад с гантелью в наклоне, бицепс и трицепс являются антагонистами.

Волокна скелетных мышц подразделяются на быстрые и медленные в зависимости от характера их деятельности. Быстрые (белые) мышечные волокна быстро сокращаются, имеют плохое кровоснабжение, работают без кислорода и быстро устают. Медленные (красные) мышечные волокна сокращаются медленнее, имеют лучшее кровоснабжение, используют кислород и более выносливые. Медленные мышечные волокна используются в постоянных движениях, например, для поддержания осанки.

Полосатый внешний вид волокон скелетных мышц обусловлен расположением миофиламентов актина и миозина в последовательном порядке от одного конца мышечного волокна к другому. Каждый пакет этих микрофиламентов и их регуляторные белки, тропонин и тропомиозин (наряду с другими белками), называется саркомером (см. изображение, кликабельно):

Саркомер является функциональной единицей мышечного волокна. Сам саркомер входит в состав миофибрилл, которые проходят по всей длине мышечного волокна и прикрепляются к сарколемме на его конце. Когда миофибриллы сокращаются, сокращается вся мышечная клетка. Каждый саркомер имеет длину приблизительно 2 мкм с трехмерным цилиндрическим расположением и граничит со структурами, называемыми Z-дисками (также называемыми Z-линиями), к которым прикреплены актиновые миофиламенты. Поскольку актин и его тропонин-тропомиозиновый комплекс образуют нити, которые тоньше миозина, его называют тонкой нитью саркомера. Аналогичным образом, поскольку нити миозина и их многочисленные головки имеют большую массу и толще, их называют толстой нитью саркомера.

№3.2  Нервно-мышечный узел

Волокна скелетных мышц стимулируются электрическими импульсами нервной системы. Нервы простираются наружу от спинного мозга, чтобы соединиться с мышечными клетками. Область, где соединяются мышца и нерв, называется мионевральным соединением. Когда от мозга в мышцу поступает определенное указание, нерв высвобождает химическое вещество, называемое нейротрансмиттером, которое пересекает микроскопическое пространство между нервом и мышцей, и заставляет мышцу сокращаться.

Каждая скелетная мышца также богато снабжается кровеносными сосудами для питания, доставки кислорода и удаления отходов. Кроме того, каждое мышечное волокно в скелетной мышце снабжается аксонной ветвью соматического двигательного нейрона, которая сигнализирует о сокращении волокна:

Место, где терминал моторного нейрона встречается с мышечным волокном, называется нервно-мышечным соединением (НМС). Именно здесь мышечное волокно впервые реагирует на передачу сигналов двигательным нейроном. Каждое скелетное мышечное волокно в каждой скелетной мышце иннервируется моторным нейроном в НМС. Сигналы возбуждения от нейрона — единственный способ функционально активировать волокно, чтобы его сжать.

Собственно, по анатомии скелетных мышц это все.

Чтобы у вас сложилась целостная картина по всем трем типам мышц,, приведем следующую сводную таблицу:

Итак, с анатомической теорией разобрались переходим к двигательной.

Мышечная система человека: как работают мышцы

Начнем с…

№1. Скелетные мышцы и рычаги

Скелетные мышцы работают вместе с костями и суставами, образуя рычажные системы. Мышца действует как сила усилия, сустав как точка опоры, кость как рычаг, а перемещаемый объект как нагрузка. Существует три класса рычагов: первый, второй и третий. Однако подавляющее большинство рычагов тела человек — рычаги третьего рода.

Рычаг третьего рода — система, в которой точка опоры (А) находится на конце рычага, а усилие (F) находится между точкой опоры и нагрузкой (R) на другом конце рычага. В качестве примера можно привести копку лопатой. Земля обеспечивает сопротивление, когда вы втыкаете конец лопаты в землю. Сила генерируется при подъёме средней части ручки. Ваша другая рука обеспечивает ось на другом конце лопаты:

Рычаги третьего рода имеют наибольшее распространение в теле человека и представлены мышцами, сгибающими конечности в суставах. Так, например, локтевой сустав является осью, а двуглавая мышца плеча и плечевая мышца, расположенные дистально, обеспечивают силу. Сопротивлением является вес предплечья и предмета, удерживаемого в руке.

Рычаги третьего рода в теле служат для увеличения расстояния, перемещаемого под нагрузкой. “Платой” за это увеличение расстояния является то, что усилие, необходимое для перемещения груза, должно быть больше, чем масса груза. Например, бицепс плеча тянется по радиусу предплечья, вызывая сгибание в локтевом суставе в системе рычагов третьего рода. Очень незначительное изменение длины бицепса вызывает гораздо большее движение предплечья и кисти, но сила, прилагаемая бицепсом, должна быть выше, чем нагрузка, перемещаемая мышцей.

№2. Скелетные мышцы и мотонейроны

Нервные клетки, называемые моторными нейронами, контролируют скелетные мышцы. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе, известной как двигательная единица. Когда моторный нейрон получает сигнал от мозга, он одновременно стимулирует все клетки мышц в своей двигательной единиц:

Размер двигательных единиц варьируется по всему телу в зависимости от функции мышцы. Мышцы, выполняющие мелкие движения, например, движения глаз или пальцев, имеют очень мало мышечных волокон в каждой двигательной единице, чтобы повысить точность контроля мозга над этими структурами. Мышцы, которым требуется много сил для выполнения своих функций, например, мышцы ног или рук, содержат много мышечных клеток в каждой двигательной единице. Один из способов, которыми тело может контролировать силу каждой мышцы, это определить, сколько двигательных единиц нужно активировать для данной функции. Это объясняет, почему те же самые мышцы, которые используются, чтобы поднять карандаш, также используются, чтобы поднять шар для боулинга.

№3. Скелетные мышцы и сокращения

Мышцы сокращаются, когда стимулируются сигналами от их двигательных нейронов. Моторные нейроны контактируют с мышечными клетками в точке, называемой нервно-мышечным соединением (НМС). Моторные нейроны высвобождают нейротрансмиттерные химические вещества в НМС, которые связаны со специальной частью сарколеммы, известной как концевая пластина двигателя. Концевая пластина двигателя содержит множество ионных каналов, которые открываются в ответ на нейротрансмиттеры и позволяют положительным ионам проникать в мышечное волокно. Положительные ионы образуют электрохимический градиент, чтобы сформироваться внутри клетки, которая распространяется по сарколемме и Т-канальцам, открывая еще больше ионных каналов. Когда положительные ионы достигают саркоплазматического ретикулума, ионы Ca2 + высвобождаются и пропускаются в миофибриллы. Ионы Ca2 + связываются с тропонином, что приводит к изменению формы молекулы тропонина и перемещению соседних молекул тропомиозина. Тропомиозин удаляется от мест связывания миозина на молекулах актина, что позволяет актину и миозину связываться друг с другом:

Молекулы АТФ приводят в действие белки миозина в толстых нитях, чтобы изгибаться и притягивать молекулы актина в тонких нитях. Белки миозина действуют как весла на лодке, притягивая тонкие нити ближе к центру саркомера. Когда тонкие нити стянуты вместе, саркомер укорачивается и сжимается. Миофибриллы мышечных волокон состоят из множества саркомеров подряд, так что, когда все саркомеры сокращаются, мышечные клетки сокращаются с большой силой относительно их размера.

Мышцы продолжают сокращаться до тех пор, пока они стимулируются нейротрансмиттером. Когда моторный нейрон останавливает высвобождение нейротрансмиттера, процесс сокращения начинает меняться. Кальций возвращается в саркоплазматический ретикулум, тропонин и тропомиозин возвращаются в исходное положение, а актин и миозин защищены от связывания. Саркомеры возвращаются в свое удлиненное состояние покоя, как только сила миозина прекращает натягивать нити актина.

№4. Скелетные мышцы и типы сокращений

Сила сокращения мышц может контролироваться двумя факторами: количеством двигательных единиц, участвующих в сокращении, и количеством стимулов со стороны нервной системы. Один нервный импульс двигательного нейрона заставит моторную единицу кратковременно сжаться, прежде чем расслабиться. Это небольшое сокращение известно как контракция. Если моторный нейрон выдает несколько сигналов в течение короткого периода времени, сила и продолжительность сокращения мышц увеличивается. Это явление известно как временное суммирование.

Если двигательный нейрон дает много нервных импульсов в быстрой последовательности, мышца может войти в состояние столбняка (тетанус) или полного и длительного сокращения. Она будет в нем оставаться до тех пор, пока скорость нервного сигнала не уменьшится или пока мышца не станет слишком утомленной, чтобы поддерживать состояние столбняка.

Не все сокращения мышц вызывают движение. Изометрические сокращения — легкие сокращения, которые увеличивают напряжение в мышце, не прикладывая достаточных усилий для перемещения части тела. Когда люди напрягают свое тело из-за стресса, они выполняют изометрическое сокращение. Удержание объекта или определенной позы также являются результатом изометрических сокращений. Сокращение, которое производит движение, является изотоническим сокращением. Изотонические сокращения необходимы для развития мышечной массы путем поднятия тяжестей:

Тонус мышц является естественным состоянием, при котором скелетная мышца остается частично сокращенной на протяжении всего времени. Мышечный тонус обеспечивает небольшое напряжение в мышцах, чтобы предотвратить повреждение мышц и суставов от внезапных движений, а также помогает поддерживать осанку. Все мышцы постоянно поддерживают определенный мышечный тонус, если только мышцы не были “отключены” от центральной нервной системы из-за повреждения нерва.

№5. Скелетные мышцы: метаболизм и усталость

Мышцы получают энергию из разных источников в зависимости от ситуации, в которой они работают. Мышцы используют аэробное дыхание, когда мы прикладываем к ним низкий или умеренный уровень силы. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробное дыхание очень эффективно и может продолжаться до тех пор, пока мышцы получают достаточное количество кислорода и глюкозы, чтобы продолжать сокращаться.

Когда мы используем мышцы для создания высокого уровня силы, они настолько сильно сокращаются, что кровь, несущая кислород, не может попасть в мышцу. Это условие заставляет их создавать энергию с помощью молочнокислого брожения — формы анаэробного дыхания. Анаэробное дыхание намного менее эффективно, чем аэробное дыхание: для каждой молекулы глюкозы вырабатывается только 2 молекулы АТФ. Мышцы быстро устают, поскольку они сжигают свои запасы энергии при анаэробном дыхании. Чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин, красный пигмент, обнаруженный в мышцах, содержит железо и накапливает кислород в крови подобно гемоглобину. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствие кислорода.

Еще одним химическим веществом, которое помогает поддерживать работоспособность мышц, является креатин-фосфат. Мышцы используют энергию в форме АТФ, превращая АТФ в АДФ, чтобы высвободить свою энергию. Креатинфосфат отдает свою фосфатную группу АДФ, чтобы превратить его обратно в АТФ, чтобы обеспечить дополнительную энергию для мышц. Когда у мышц заканчивается энергия во время аэробного или анаэробного дыхания, мышца быстро утомляется и теряет способность сокращаться. Это состояние известно как мышечная усталость. Утомленная мышца содержит очень мало или совсем не содержит кислорода, глюкозы или АТФ, но вместо этого содержит много продуктов жизнедеятельности: молочная кислота и АДФ.

Тело должно принимать дополнительный кислород после нагрузки, чтобы заменить кислород, который накапливался в миоглобине в мышечном волокне, а также для стимулирования аэробного дыхания, которое восстановит запасы энергии внутри клетки. Кислородный долг (или поглощение кислорода для восстановления) — название дополнительного кислорода, который организм должен принимать, чтобы восстановить мышечные клетки до состояния покоя. Это объясняет, почему вы чувствуете одышку в течение нескольких минут после напряженной деятельности, просто ваше тело пытается восстановить свое нормальное состояние.

С двигательной теорией все. Теперь давайте выясним…

Какое влияние оказывают тренировки, упражнения на мышечную систему

Для мышечной системы упражнения имеют как краткосрочные, так и долгосрочные последствия. Упражнения работают как стимул и “вгоняют” мышцы в стрессовое состояние. После тренировки вы можете ощутить на себе следующие кратковременные эффекты:

  • усиление кровотока из-за увеличенного объема крови, которая перекачивается в мышечную ткань;
  • мышечная усталость. Снижение способности мышц генерировать силу;
  • мышечное истощение. Полное или близкое к этому состоянию исчерпание резервов мышцы. Невозможность выполнения мускулом заданной работы;
  • мышечные повреждения. Травмирование мышечных волокон (микроразрыв, микротравма);
  • прочее: судороги, озноб, повышение температуры тела.

…и долгосрочные:

  • улучшение состава тела. Регулярные тренировки, вкупе с правильным питанием, приводят к уменьшению процента подкожной-жировой клетчатки и увеличению процента сухой мышечной массы;
  • увеличение размера мышц и их силы. Регулярные тренировки определенных мышц могут увеличить их размер до 60%; Увеличение мышечной массы обусловлено, главным образом, увеличением диаметра отдельных мышечных волокон;
  • улучшение координации мышц. Каждая тренировка вносит свой вклад в повышение стабильности выполнения упражнений и отключение нецелевых мышц;
  • повышение общей выносливости;
  • развитие сердечно-сосудистой системы. Увеличивается количество кровеносных сосудов и расширяется капиллярное русло. Мышцы эффективнее получают питательные вещества и кислород. Миокард становится более тренированным, что  обеспечивает устойчивое кровяное давление в повседневной жизни;
  • увеличение скорости метаболизма, обмена веществ;
  • биохимические изменения: 1) увеличение энергетической емкости организма. Это происходит вследствие увеличения размера и количества митохондрий – энергетических клеток-станций; 2) увеличение скорости метаболизма; 3) увеличение окисления жирных кислот;
  • улучшение гормонального фона (в т.ч. повышение либидо);
  • омоложение организма, повышение качеств его регенеративных функций;
  • прочее: повышение мышечного тонуса, скорости реакции, гибкости и т.д.

Ну, и последнее на сегодня это…

Лучшие силовые упражнения для мышечной системы

Электромиография позволяет достаточно точно определить, какое упражнение является лучшим для той или иной мышечной группы. Проанализировав отчеты различных исследователей, представляем вашему вниманию следующий список из лучших упражнений:

  • грудные: жим штанги лежа, отжимания на брусьях, сведение рук в тренажере кроссовер;
  • спина: подтягивания на турнике, становая тяга с плинтов, тяга Т-грифа;
  • плечи: армейский жим сидя, разведение рук стоя с гантелями, обратные разведения в тренажере;
  • бицепс: концентрированный подъем на бицепс, сгибания рук с гантелью сидя на скамье под углом вверх;
  • трицепс: жим штанги узким хватом, обратные отжимания м/у скамьями;
  • квадрицепс: приседания со штангой на груди, выпады с гантелями, гакк-приседания;
  • бицепс бедра: румынская становая тяга со штангой, упражнение доброе утро, сгибание ног лежа;
  • пресс: скручивания лежа на фитболе, скручивания с верхнего блока, упражнение велосипед.

Помимо озвученных упражнений обратите внимание на упражнения-связки: подъем гантелей на бицепс + жим гантелей вверх, приседания со штангой + армейский жим и пуловер со штангой лежа на скамье + жим штанги. Стройте свою программу тренировок вокруг этих упражнений, и ваша мышечная система всегда будет в хорошем тонусе.

Собственно, по содержательной части это все. Подытожим.

Послесловие

3300 слов – именно столько нам потребовалось, чтобы раскрыть тему мышечной системы человека. И мы довольны проделанной работой. А довольны ли наши уважаемые читатели? Скоро узнаем. А пока -пока!

PS. ухватили чего? Чего ухватили? 🙂

PPS. Спортивное питание европейского качества со скидкой 40%. Не упустите возможность выгодно закупиться на 2019! Скидочная ссылка http://bit.ly/AZBUKABB

Cкачать статью в pdf>>

С уважением и признательностью, Протасов Дмитрий.

ferrum-body.ru

Мышечная система

Скелетные мышцы формируют активную часть опорно-двигательной системы человека. Их сокращение обеспечивает перемещение тела и его отдельных частей в пространстве.

Замечание 1

Существенно, что с возрастом и в результате тренировок изменяется не число волокон скелетных мышц человека, а только их толщина. Число мышц постоянно — более 600, что составляет более половины массы тела.

Мышечная система человека делится на три группы соответственно частям тела: мышцы головы, туловища и конечностей.

Основные типы мышц

Анатомически мышцы делят на поперечнополосатые и гладкие, но функционально выделяют ещё и сердечную мышцу.

Скелетные мышцы образованы поперечнополосатой мышечной тканью, волокна которой собраны в пучки.

Сердечная мышца состоит из поперечнополосатых мышечных волокон, которые на определённых сливаются (переплетаются) друг с другом благодаря наличию нексусов (специальных связей).

В функциональном отношении различают три вида мышечной ткани, каждая из которых имеет свои отличия.

Волокна скелетной мышечной ткани вытянуты, цилиндрической формы, не могут ветвиться. Каждое волокно имеет много ядер. У них хорошо развита поперечная исчерчённость. Такие волокна способны быстро сокращаться под влиянием импульсов коры больших полушарий, которые поступают по соматических нервах.

Строение скелетных мышц

Основу скелетных мышц составляет поперечнополосатая мышечная ткань.

В каждой мышце есть активная сократительная часть (мышечное тело, брюшко) и пассивная несократительная — сухожилие.

Мышечное тело состоит из мышечных волокон, собранных в пучки. Волокна связаны между собой соединительной тканью, которая выглядит, как тонкая сетка.

Вся мышца снаружи так же покрыта плотной соединительнотканной оболочкой.

Сухожилия состоят из плотной соединительной ткани, коллагеновые волокна которой проникают в мышечное тело, а другим концом прикреплены к холмистостям костей.

К каждой мышце подходят кровеносные сосуды и нервы (двигательные и чувствительные).

Форма и размеры мышцы зависят от выполняемой ею работы.

По форме скелетные мышцы бывают длинные, короткие и широкие.

Длинные мышцы располагаются в основном на конечностях, они могут иметь несколько головок, прикреплённых на разных костях или в разных местах одной кости (дву-, три- и четырёхглавые).

Короткие мышцы расположены между отдельными позвонками и рёбрами.

Широкие мышцы находятся в основном на туловище и имеют форму пластов различной толщины.

Понятие о двигательной нервно — мышечной единице

Определение 1

Под двигательной (нервно-мышечной) единицей имеется в виду совокупность мотонейрона спинного мозга и иннервированных им миофибрилл.

В зависимости от скорости сокращения и стойкости к усталости различают медленные (S — “slow”) и быстрые (F — “fast”) двигательные единицы, которые, в свою очередь, делятся на стойкие к усталости (FR) и быстроутомляющиеся (FF).

Строение поперечнополосатого мышечного волокна

Мышца состоит из отдельных пучков, каждый из которых содержит большое количество мышечных волокон.

Определение 2

Мышечное волокно — основная (наименьшая) функциональная единица мышцы.

Каждое волокно покрыто плазматической мембраной и помещено в тоненькую трубочку соединительной ткани (эндомизиум).

Пучки волокон так же окружены соединительнотканными перегородками (перимизиумом).

Вся мышца расположена в чехле из соединительной ткани (эпимизиуме).

У большинства скелетных мышц оба их конца прикреплены к сухожилиям.

Мышечные волокна преимущественно уложены параллельно друг к другу, потому сила сокращения мышцы равна сумме усилий, который развивают отдельные волокна.

Каждое мышечное волокно, в свою очередь, состоит из многочисленных миофибрилл, в каждой из которых можно выделить отдельные нити.

Нити миофибрилл состоят из сократительных белков — миозина, актина, тропомиозина и тропонина.

Длина зрелых мышечных волокон может достигать длины самой мышцы, а их диаметр варьирует от 10 до 100 мкм.

Как уже указывалось, каждое волокно состоит из миофибрилл; это белковые структуры, погружённые в цитоплазму. Кроме того, в цитоплазме находятся митохондрии, саркоплазматический ретикуллюм и система поперечных трубочек, а также зёрна гликогена. Под световым микроскопом заметна характерная исчерчённость (чередование светлых и тёмных полос), свойственная всем миофибриллам. Именно потому скелетная мышца получила другое название — поперечнополосатая.

Быстрые и медленные мышцы

В большинстве случаев мышечное волокно контактирует с одним нервным окончанием — оно называется фазическим, поскольку на единичный нервный импульс отвечает фазическим единичным сокращением.

Мышцы млекопитающих делятся на быстрые и медленные. Быстрых волокон больше в мышцах, которые осуществляют быстрые движения, а медленных — в мышцах, которые участвуют в поддержании позы.

Структура миофибрилл

Мышечное волокно состоит из большого количества цилиндрических белковых элементов, которые называются миофибриллами.

Поперечная исчерчённость, свойственная волокну в целом, обусловленна упорядоченной структурой миофибрилл как в продольном, так и в поперечном направлениях. Эта упорядоченность связана с особенностями расположения белковых элементов мышцы — толстых и тонких нитей.

Толстые нити имеют диаметр около 11 нм, тонкие — 5нм.

На схеме расположения толстых и тонких нитей видно, что в поперечном разрезе они образуют гексагональную решётку, а в продольном — регулярно повторяемую структуру, состоящую из участков, которые перекрываются или не перекрываются. Рассматривая миофибриллу вдоль, можно заметить чередование светлых и тёмных полос, которое обусловлено различной светопроницательностью участков с толстыми и тонкими нитями.

На схеме показана структурная организация тонких и толстых нитей, а так же вызванная этим поперечная исчерчённость, которая наблюдается под световым микроскопом.

Наиболее заметными являются А-полосы и более светлые I-полосы, которые регулярно чередуются вдоль миофибриллы. Внутри I- полосы находится тёмная Z- линия (Z- диск), а внутри А-полосы — более светлая область, Н-зона. Н-зона делится пополам более тёмной М-линией, окружённой светлым участком — L-зоной (она заметна не всегда).

Определение 3

Такой регулярно повторяющийся участок между соседними Z-линиями называется сакромером.

Толстая нить состоит из белка миозина. Тонкая нить образована другими белками — актином, тропонином и тропомиозином.

Замечание 2

Актин и миозин способны образовывать комплекс, который называется актомиозином.

Расположение толстых и тонких нитей в области их взаимного перекрытия приводит к тому, что каждая толстая нить окружена шестью тонкими нитями, а каждая тонкая — тремя толстыми. Таким образом, тонких нитей в два раза больше, чем толстых.

Механизм сокращения мышечного волокна (теория скользящих нитей)

Согласно этой теории, во время мышечного сокращения происходит взаимное перемещение тонких и толстых нитей, при этом длина саркомера уменьшается, а длина нитей не изменяется.

Замечание 3

Собственно скольжение происходит благодаря реакциям между выступами миозиновых нитей и активными участками тонких нитей (каждый выступ сначала прикрепляется к актиновой нити, потом тянет её, вызывая скольжение, после отпускает её и перемещается вдоль тонкой нити к следующей точке прикрепления).

Основные механические изменения сопровождаются определённой последовательностью биохимических процессов.

  1. Поперечный мостик между миозином и актином размыкается. Это обеспечивается действием АТФ, с которой связывается миозин:
    АМ + АТФ → А + М ∙ АТФ (где А — актин, М — миозин)

  2. АТФ расщепляется на АДФ + Ф, в это время миозин (субфрагмент S1) изменяет конфигурацию перед тем, чем снова присоединиться к тонкой нити (продукты распада АТФ остаются связанными с миозином).

  3. Поперечный мостик миозина присоединяется к новому мономеру актина.

  4. Это приводит к отщеплению продуктов гидролиза АТФ и выделению энергии, за счёт которой осуществляется «рабочий ход» (поворот S1 и линейное перемещение актина).

Сила мышц

Определение 4

Сила мышцы определяется по максимальному грузу, который она может поднять, и максимальному напряжению, которое она может развить при условии изометрического сокращения.

Принято различать показатели максимальной силы, относительной анатомической силы, абсолютной силы и максимальной произвольной силы.

Определение 5

Максимальная сила — это такая сила мышцы, которую она развивает в изометрическом режиме при условии участия всех её двигательных единиц, их работы в тетаническом режиме (одно длительное сокращение мышцы без расслабления вследствие её частого повторяемого раздражения).

Мышца сокращается при длине покоя (длине, при которой мышца развивает максимальное напряжение). При произвольном напряжении мышцы достичь таких условий тяжело, потому максимальную силу определяют при электрическом раздражении нерва, который иннервирует мышцу.

Понятие максимальной силы мышцы теоретическое и характеризует потенциальные силовые возможности мышцы.

Определение 6

Относительная анатомическая сила — это отношение максимальной силы к анатомическому поперечнику мышцы (площади поперечного разреза мышцы, перпендикулярного к её длине).

Определение 7

Абсолютная сила мышцы — это отношение максимальной силы к её физиологическому поперечнику (площади поперечного разреза мышцы, перпендикулярного к расположению всех её волокон).

Определение 8

Максимальная произвольная сила — это сила, которую развивает мышца при максимальном произвольном сокращении.

Этот показатель характеризирует фактическую силу мышцы, которую она развивает при нормальных условиях, то есть степень реализации потенциальных возможностей мышцы (максимальной силы).

Замечание 4

Разница между этими двумя показателями называется силовым дефицитом.

Поскольку, многие мышцы человека имеют сравнительно большую площадь сечения, то они могут развивать значительное напряжение.

Пример 1

Сила, которую могут развить все мышцы тела здорового человека во время одновременного сокращения, составляет около 22 т, а лишь одна ягодичная мышца может развить силу 1,2 т.

Сила мышц зависит от величины поперечного сечения мышцы, её исходной длины, возраста, функционального состояния, температуры и др.

Статическая и динамическая работа мышц и их значение

Замечание 5

Работа мышц бывает статической (удерживание груза, поддержание позы — изометрический режим сокращения) и динамической (перемещение груза и движения костей в суставах).

Во время подъёма груза массой m динамическая работа А мышцы определяется результатом умножения силы тяготения, действующей на тело, на высоту подъёма h (или же величину укорочения мышцы):

А = Рh = mgh

Статическая работа определяется в результате умножения силы на время выполнения этой работы:

А = Рt.

Работа мышцы возрастает при увеличении массы груза, который поднимается, но только до определённой границы: при большой массе груза высота подъёма оказывается настолько малой, что работа остаётся неизменной, или же уменьшается.

Замечание 6

Максимальная работа выполняется мышцей при средней её нагрузке («закон средних нагрузок»).

Физическая работа характеризуется количеством мышц, которые берут в ней участие, динамикой их сокращения и расслабления, силой и длительностью мышечной работы.

Замечание 7

Методика, позволяющая получить графическую запись выполняемой работы, называется эргографией, прибор для записи — эргографом, а саму запись — эргограмой.

Усталость мышц

Определение 9

Усталость мышц — это временное снижение или потеря трудоспособности мышцы, наступающее как результат его работы и исчезает после отдыха.

Усталость мышцы наступает в результате развития процесса усталости (отказ от работы) в двигательных нервных центрах ЦНС, нервно — мышечном синапсе и непосредственно в мышце в результате накопления продуктов обмена и недостатке кислорода.

При условии усталости может возникнуть неконтролируемое непрерывное сокращение мышцы (контрактура мышцы), вызванное истощением АТФ в саркоплазме, что делает невозможным расслабление мышечных волокон.

Замечание 8

Ускоренное обновление трудоспособности усталых мышц при условии активного отдыха, что является физиологическим обоснованием преимущества активного отдыха в кратковременные перерывы в работе в сравнении с пассивным, называется эффектом Сеченова.

Гиподинамия

Под гиподинамией понимают состояние пониженной двигательной активности, вызванное общей мышечной слабостью в результате заболевания (крайний случай — динамия) или пребыванием в условиях сниженной гравитации, невесомости, постельного режима и т. п., когда нагрузка на мышцы резко уменьшается. Длительное пребывание в таких условиях сопровождается атрофическими изменениями в мышцах (атрофия от неиспользования), общей физической детренированостью, детренированностью сердечно — сосудистой системы, изменениями солевого баланса, системы крови, иммунитета, деминерализацией костей и др.

Иногда вместо термина «гиподинамия» используют термин «гипокинезия» (уменьшённая подвижность), что не является правомерным.

spravochnick.ru

Мышечная система человека — Знаешь как

Содержание статьи

Общие сведения о мышцах. В организме человека насчитывается около 600 скелетных мышц (цвет. табл. III, IV). Мышечная система составляет значительную часть общей массы тела человека. Если у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет — 27%, то в 17—18 лет она достигает 43—44%, а у спортсменов с хорошо развитой мускулатурой — даже 50%.

Отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее — жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз.

Рис. 38. Строение мышцы:

а — мышца на поперечном разрезе: 1 — пучок мышечных волокон; 2— отдельные мышечные волокна; б — общий вид скелетной мышцы: 1 — брюшко; 2 — сухожилие

В период полового созревания (12—16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время становятся длинными и тонкими, а подростки кажутся длинноногими и длиннорукими.

Строение мышц

В мышце различают среднюю часть — брюшко, состоящее из мышечной ткани, и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, однако некоторые мышцы могут прикрепляться и к различным органам (глазному яблоку), к коже (на лице и шее) и т. д.

Каждая мышца состоит из большого количества поперечнополосатых мышечных волокон (рис. 38), расположенных параллельно и связанных между собой прослойками рыхлой соединительной ткани в пучки. Вся мышца снаружи покрыта тонкой соединительнотканной оболочкой — фасцией.

Мышцы богаты кровеносными сосудами, по которым кровь приносит к ним питательные вещества и кислород, а выносит продукты обмена. Имеются в мышцах и лимфатические сосуды.

В мышцах расположены нервные окончания — рецепторы, которые воспринимают степень сокращения и растяжения мышцы.

Форма и величина мышц зависят от выполняемой ими работы. Различают мышцы длинные, короткие, широкие и круговые. Длинные мышцы располагаются на конечностях, короткие — там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами.

Один из концов мышцы называют началом. Обычно этот конец остается при сокращении неподвижным. Другой конец мышцы называют местом прикрепления или подвижной точкой. В сложных мышцах начало не одно, а могут быть две, три, четыре головки, которые, сливаясь, образуют общее брюшко. Это двуглавые, трехглавые и четырехглавые мышцы.

Разделенным может быть и тот конец мышцы, который называют прикреплением (например, длинный разгибатель пальцев). Брюшко мышцы также может быть поделено сухожилием (дву-

брюшная мышца), а может быть таких сухожильных перемычек много, как, например, в прямой мышце живота.

Работа мышц

Сокращаясь, мышцы выполняют работу. Работу скелетной мышцы определяют произведением веса поднятого груза на высоту его поднятия. Работу мышца совершает только в момент сокращения: она укорачивается, становясь при этом толще, и сближает кости, на которых укреплена. При расслаблении мышца работы не производит. Поэтому движение в любом суставе обеспечивается минимум двумя мышцами, действующими в противоположных направлениях. Такие мышцы называют антагонистами (например, сгибатели и разгибатели). При каждом движении напрягаются не только мышцы, совершающие его, но и их антагонисты, противодействующие тяге и тем самым придающие движению точность и плавность. Приводя в движение кость, мышца действует как рычаг.

Работа мышц зависит от их силы. Мышца тем сильнее, чем больше в ней мышечных волокон, т. е. чем она толще. При поперечном сечении 1 см2 мышца способна поднять груз до 10 кг.

Человек может длительное время сохранять одну и ту же позу. Это статическое напряжение мышц. К статическим усилиям относятся стояние, держание головы в вертикальном положении и др. При статическом усилии мышцы находятся в состоянии напряжения. При некоторых упражнениях на кольцах, параллельных брусьях, при удержании поднятой штанги статическая работа требует одновременного сокращения почти всех мышечных волокон и, естественно, может быть очень непродолжительной.

При динамической работе поочередно сокращаются различные группы мышц. Мышцы, производящие динамическую работу, быстро сокращаются и, работая с большим напряжением, скоро утомляются. Обычно же различные группы мышечных волокон сокращаются поочередно, что дает возможность мышце длительное время совершать работу. Нервная система, управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность работать экономно, с высоким коэффициентом полезного действия (до 25 и 35%). Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых работа будет максимальной, а утомление будет развиваться постепенно.

Работа мышц — необходимое условие их существования. Длительная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмерная работа мышц, способствует увеличению их объема, возрастанию силы и работоспособности, что способствует физическому развитию всего организма.

Мышцы человека даже в состоянии покоя несколько сокращены. Это состояние длительно удерживаемого напряжения называют тонусом мышц. Во время сна, при наркозе тонус мышц несколь-

ко снижается, тело расслабляется. Полностью исчезает мышечный тонус только после смерти. Тонические сокращения мышц не сопровождаются утомлением; благодаря им внутренние органы удерживаются в нормальном положении.

Утомление мышц

После длительной работы происходит снижение работоспособности мышц, которая восстанавливается после отдыха. Такое временное понижение работоспособности называют утомлением.

Развитие утомления связано прежде всего с изменениями, происходящими в центральной нервной системе. При этом нарушается координация движений. При утомлении используются запасы химических веществ, служащих источниками энергии сокращения, накапливаются продукты обмена (молочная кислота и др.).

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины нагрузки. Утомление может быть вызвано неблагоприятной обстановкой. Неинтересная работа быстрее вызывает наступление утомления.

Физическое утомление—нормальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Впервые И. М. Сеченов в 1903 г. показал, что восстановление работоспособности утомленных мышц правой руки происходит значительно быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой отдых был назван И. М. Сеченовым активным.

Это явление можно объяснить следующим образом. Известно, что работающие мышцы получают импульсы из соответствующих участков нервной системы. При длительной работе происходит утомление ранее всего в нервных центрах, связанных с определенными группами работающих мышц. Оказывается, восстановление работоспособности нервных клеток, посылавших импульсы к мышцам правой руки, происходит быстрее, если нервные клетки, связанные с мышцами левой руки, находятся в состоянии возбуждения.

Механизм мышечного сокращения

В основе мышечных сокращений лежат сложные химические превращения органических веществ мышцы. Распад этих веществ сопровождается освобождением энергии, которая идет не только на работу мышц, но и в значительном количестве превращается в тепло. Это тепло согревает тело.

В составе мышечных волокон собственно сократительным аппаратом являются миофибриллы. В поперечнополосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки (диски). Одни из этих участков обладают двойным лучепреломлением. В обыкновенном свете под микроскопом они кажутся темными. Это анизотропные участки, их обозначают буквой А. Другие участки в обыкновенном свете выглядят светлыми.

Рис. 39. А — электронно-микроскопическая картина миофибриллы (схематизировано). Показаны диски AиI, полоски Z и Н. Б, В — взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б) и сокращенной (В) миофибрилле

Они не обладают двойным лучепреломлением. Это изотропные диски, обозначаемые буквой I (рис. 39, А).

В середине диска А проходит светлая полоса И, посредине диска I — темная полоса Z. Полоса Z представляет собой тонкую мембрану, сквозь поры которой проходят миофибриллы.

Американскому цитологу Хаксли с помощью электронной микроскопии удалось показать, что каждая из миофибрилл мышечного волокна состоит в среднем из 2500 протофибрилл. Толстые протофибриллы состоят из белка миозина, а тонкие протофибриллы — из белка актина. Согласно представлениям Хаксли, миозин и актин в миофибрилле пространственно отделены друг от друга.

Содержание миозина в мышцах велико: в 1 кг мышц содержится около 200 г белков, из них можно выделить почти 100 г миозина. Другой белок — актин — содержится в мышцах в меньшем количестве: из 1 кг мышц выделяется примерно около 30 г актина.

В состоянии покоя мышечного волокна нити расположены в миофибрилле так, что тонкие и длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями (рис. 39, Б). Поэтому диски I состоят только из актиновых нитей, а диски А — из нитей миозина.

Светлая полоска Н свободна от актиновых нитей. Мембрана Z, проходя через середину диска I, скрепляет между собой эти нити.

Согласно представлениям Хаксли, при сокращении миофибрилл происходит вдвижение нитей актина в промежутки между нитями миозина, своеобразное «скольжение» (рис. 39, В)В результате такого вдвижения длина дисков Iукорачивается, а диски А сохраняют свой размер. В связи с тем, что актиновые нити при сокращении сближаются друг с другом своими концами, светлая полоска Н почти исчезает.

Наиболее интересное свойство миозина — его способность расщеплять АТФ. Это свойство миозина открыто советскими биохимиками В. А. Энгельгардтом и М. Н. Любимовой в 1939 г. Под влиянием миозина от молекулы АТФ отщепляется одна молекула фосфорной кислоты. При этом освобождается энергия. Миозин

таким образом является не только сократительным белком, но и одновременно ферментом аденозинтрифосфатазой (АТФ-азой).

Что же заставляет белковые нити «скользить» при сокращении? Механизм этот пока еще не выяснен. Предполагают, что под влиянием ферментативных свойств миозина АТФ-аза толстых нитей расщепляет АТФ, находящуюся на тонких нитях актина. АТФ при этом разрушается и сходит с актиновых нитей. Последние скручиваются, скользят вдоль миозиновых нитей. Очевидно, на этом уровне происходит переход химической энергии расщепления АТФ в механическую энергию движения. Энергию для мышечного сокращения поставляет АТФ. В скелетной мышце содержание АТФ составляет 0,2—0,4%. Этого количества АТФ достаточно примерно для 30 одиночных сокращений мышцы. Однако в нормальных условиях мышца может работать очень долго. Это связано с тем, что в мышце идет процесс ресинтеза, т. е. восстановления АТФ, процесс ее синтеза.

За счет чего синтезируется АТФ в работающей мышце? В мышце есть богатое энергией фосфорное соединение — креатинфосфат. В молекуле креатинфосфата содержится одна макроэргическая связь:

При гидролитическом расщеплении креатинфосфата образуются креатин и фосфорная кислота. При этом освобождается энергия. Этот процесс происходит под влиянием фермента фосфокиназы. При этом освобождающаяся фосфорная кислота восстанавливает АТФ. Ресинтез АТФ в присутствии креатинфосфата идет в течение тысячных долей секунды. Но при усиленной мышечной работе истощаются запасы креатинфосфата. Тогда важную роль приобретают процессы гликолиза и окисления, протекающие в мышце (см. стр. 29, 34). Окисление молочной и пировиноградной кислот, образующихся в мышце во время сокращения, способствует ресинтезу креатинфосфата и АТФ.

Основные группы мышц человеческого тела

К мышцам туловища относятся мышцы грудной клетки, живота и спины (цвет, табл. V—X).

Мышцы, располагающиеся между ребрами, а также другие мышцы грудной клетки участвуют в функции дыхания и называются дыхательными. К их числу принадлежит и диафрагма.

Мощно развитые мышцы груди приводят в движение и укрепляют на туловище верхние конечности (большая и малая грудные, передняя зубчатая мышцы).

Мышцы живота выполняют различные функции. Они образуют стенку брюшной полости и благодаря своему тонусу удерживают внутренние органы от смещения, опускания, выпадения. Сокращаясь, мышцы живота действуют на внутренние органы в качестве брюшного пресса, что способствует выведению мочи, кала, а также родовому акту. Сокращение мышц брюшного пресса способствует движению крови в венозной системе, осуществлению дыхательных движений. Мышцы живота участвуют в сгибании позвоночного столба вперед.

При слабости мышц живота может произойти не только опущение органов брюшной полости, но и образование грыж. При грыжах происходит выход внутренних органов — кишечника, желудка, большого сальника, почки из брюшной полости под кожу живота.

К мышцам брюшной стенки относятся прямая мышца живота, пирамидальная мышца, квадратная мышца поясницы и широкие мышцы живота — наружная и внутренняя косые и поперечная. По средней линии живота тянется плотный сухожильный тяж. Это белая линия. По бокам от белой линии располагается прямая мышца живота с продольным направлением волокон.

На спине расположены многочисленные мышцы вдоль позвоночного столба. Это глубокие мышцы спины. Они прикрепляются главным образом к отросткам позвонков. Эти мышцы участвуют в движениях позвоночного столба назад и в сторону. К поверхностным мышцам спины относятся трапециевидная мышца и широчайшая мышца спины. Они участвуют в движении верхних конечностей и грудной клетки.

Среди мышц головы различают жевательные мышцы и мимические. К жевательным мышцам относятся височная, жевательная, крыловидные. Сокращения этих мышц вызывают сложные жевательные движения нижней челюсти. Мимические мышцы одним, а иногда и двумя своими концами прикрепляются к коже лица. При сокращении они смещают кожу, вызывая соответствующую мимику, т. е. то или иное выражение лица. Круговые мышцы глаза и рта также относятся к числу мимических мышц.

Мышцы шеи запрокидывают голову, наклоняют ее и поворачивают. Лестничные мышцы поднимают ребра, участвуя во вдохе. Мышцы, прикрепленные к подъязычной кости, при сокращений изменяют положение языка и гортани при глотании и произнесении различных звуков. |

Пояс верхних конечностей соединяется с туловищем лишь в области грудино-ключичного сустава. Укреплен пояс верхних конечностей мышцами туловища (трапециевидная, малая грудная, ромбовидная, передняя зубчатая и мышца, поднимающая лопатку).

Мышцы пояса верхних конечностей приводят в движение верхнюю конечность в плечевом суставе. Среди них важнейшая — дельтовидная мышца. При сокращении эта мышца сгибает руку в плечевом суставе и отводит руку до горизонтального положения.

В области плеча спереди расположена группа мышц-сгибателей, сзади—разгибателей. Среди мышц передней группы — двуглавая мышца плеча, задней — трехглавая мышца плеча.

Мышцы предплечья на передней поверхности представлены сгибателями, на задней — разгибателями.

Среди мышц кисти — длинная ладонная мышца, сгибатели пальцев.

Мышцы, расположенные в области пояса нижних конечностей, приводят в движение ногу в тазобедренном суставе, а также позвоночный столб. В переднюю группу мыши- входит одна крупная мышца — подвздошно-поясничргая. Среди задненаружной группы мышц тазового пояса — большая, средняя и малая ягодичные

мышцы.

Ноги имеют более массивный скелет, чем руки; их мускулатура обладает большой силой, но вместе с тем меньшим разнообразием и ограниченным размахом движений.

На бедре спереди располагается самая длинная в человеческом теле (до 50 см) портняжная» мышца. Она сгибает ногу в тазобедренном и коленном суставах. Четырехглавая мышца бедра лежит глубже портняжной мышцы, облетая бедренную кость почти со всех сторон. Основная функция этой мышцы — разгибание коленного сустава. При стоянии четырехглавая мышца не дает коленному суставу сгибаться.

 

Статья на тему Мышечная система человека

znaesh-kak.com

Мышечная система человека

Движение неотъемлемая часть человеческой жизни. Движение человека невозможно без мышц. Без них человек не мог бы быть тем, кем он является. Мышцы помогают поддерживать наше тело в горизонтальном состоянии, выполнять различные виды деятельности от самых простых движений пальцами до акробатических номеров. Мышцы по своей структуре, типу и функциям очень отличаются.

Мышечная система человека – это система органов, которую образуют скелетные мышцы, приводящие в движение костную систему, несущую ответственность за движения человека.

Замечание 1

Мышцы представляют собой мышечную ткань, которая пронизана сосудами и нервными окончаниями. Большинство мышц человеческого тела парные. У разных людей мышечная система развита в разной степени. У профессиональных спортсменов она развита в наибольшей степени.

Типы мышечной ткани

Существует три типа мышечной ткани:

  • поперечнополосатые мышцы скелета;
  • поперечнополосатые мышцы сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Поперечнополосатые мышцы скелета — это упругая ткань, которая сокращается под влиянием нервных импульсов. Эта мышечная ткань нужна человеку для дыхания, движения, управления голосовыми связками. Скелетная мышечная ткань состоит из миоцитов.

Поперечнополосатые мышцы сердца отличаются от поперечнополосатых мышц скелета по строению и по функции. Сердечные мышцы сокращаются не по воле человека, за их сокращение отвечает вегетативная нервная система. Сердечная мышечная ткань состоит из кардиомиоцитов. Кардиомиоциты – это мышечные клетки сердца. Кардиомиоциты соединены между собой вставочными дисками.

Гладкие мышцы внутренних органов состоят в основном из веретенообразных мышечных волокон. Клетки в этом типе мышечной ткани соединены между собой нексусами. Особенность этих мышц заключается в том, что они могут воспроизводить спонтанную автоматическую деятельность. Этот вид мышечной ткани обладает большой пластичностью, что положительно сказывается на работе внутренних органов в состав которых она входит.

Строение мышцы

Мышца состоит из рыхлой и плотной ткани, сосудов, нервов. Основа мышцы – это пучки поперечнополосатых волокон. Вокруг мышцы находится эпимизий, который затем переходит в сухожилие.

Одни волокна прикрепляется к костям, а другие имеют опору на соединительно-тканных образованиях мышц.

Внутри мышцы проходят капилляры и нервные волокна благодаря им осуществляются кровоснабжение и двигательные импульсы.

Классификация мышц

Существует множество классификаций скелетных мышц. Классификации основаны на различных признаках, например, по форме, по направлению мышечных волокон, по расположению в теле человека, по функции, по соотношению к суставам.

По форме мышцы бывают квадратные, треугольные или круговые. По длине они делятся на короткие, длинные и широкие. По строению мышцы бывают веретенообразные. Чаще эти мышцы расположены на конечностях. Они прикрепляются к костям и отвечают за движение.

По ходу мышечных волокон очень различается много типов мышц. Среди них отмечают мышцы с прямым ходом и мышцы с поперечным ходом. Они в свою очередь делятся на одноперистые, двуперистые и многоперистые.

Мышцы также классифицируются по той функции, которую они выполняют. Мышцы могут выступать как сгибатели и разгибатели, могут выполнять отводящую и приводящую функцию. Так же в зависимости от исполняемой функции мышцы делятся на супенаторы, пронаторы, сжиматели, напрягающие, поднимающие и опускающие.

Мышцы делятся на группы так же по месту прикрепления. Мышцы могут прикрепляться к костям и к суставам.

По отношению к суставам, мышцы разделяют на односуставные, двусуставные и многосуставные. Многосуставные мышцы покрывают одно-суставные.

По положению мышцы могут подразделяться на поверхностные и глубокие. Мышцы могут быть наружными и внутренними, а также литеральными и медиальными.

Функции мышечной системы

Мышечная система имеет несколько основных функции:

  • движение
  • удерживание тела
  • производство тепла
  • формирующая
  • защитная

Сердечная мышечная ткань отвечает за сердцебиение, то есть помогает крови передвигаться по нашему организму. Висцерная мышечная ткань, которая представлена во внутренних органах помогает передвигать пищу и продукты жизнедеятельности по пищеварительному тракту. Иначе эта деятельность называется перистальтика. Скелетная мышечная ткань отвечает за движение человека. Мышечная ткань приводит в движение суставы. Эти мышцы осуществляют изотонической движение и изометрическое.

Скелетные мышцы помогают поддерживать наше тело в вертикальном положении. За это свойство отвечает мышечный тонус. Если мышечный тонус отсутствует, то человек теряет устойчивость.

Еще одна важная функция мышц — это поддержание тепла в организме. Мышцы, находясь в активном состоянии, продуцируют тепло, которое с помощью крови переносится в другие части организма и помогает поддерживать терморегуляцию. Излишнее тепло, например, во время физической активности выводится через потоотделение. Мышцы непосредственно реагируют на повышение и понижение температуры. Если температура внешней среды высокая, то мышцы расслабляются, если низкая, то напрягаются.

Мышцы также имеют функцию формирования тела и фигуры. Мышцы определяют внешнюю форму тела. Человек может самостоятельно регулировать свой мышечный объем.

Защитная функция мышц очень важна. Органы брюшной полости защищены мышцами пресса. Кости и суставы тоже в свою очередь находятся под защитой мышц. Они защищают кости и суставы от ушибов, повреждений, переломов. Не все кости и суставы охраняют мышцы, например, коленные суставы не покрыты мышцами поэту чаще других страдают от повреждений.

Замечание 2

Мышечная ткань восстанавливается достаточно быстро, примерно 2 недели требуется для полной регенерации мышечной ткани, кости и суставы, которые они защищают восстанавливаются значительно медленнее.

spravochnick.ru

Мышечная система человека. Строение мышечной системы человека :: SYL.ru

Какие бы действия ни совершал человек, он практически всегда задействует свою мышечную систему. Мышцы – это одна из основных частей нашего опорно-двигательного аппарата. Именно за счет их усилий мы можем принимать вертикальное положение и другие позы. Мышцы же брюшной стенки не только поддерживают внутренние органы, но и защищают их от механических повреждений и прочих неблагоприятных факторов среды.

За счет их работы мы глотаем, дышим и передвигаемся в пространстве. В конце концов, даже наше сердце является мышцей, а уж о его-то важности знает каждый! В этой работе мы задались целью рассказать вам о следующем:

  • Дать общую характеристику.
  • Рассказать об их строении.
  • Рассмотреть основные группы.
  • Обсудить функциональные свойства и некоторые сведения по механике работы.
  • А также рассмотреть, как изменяется мышечная система с возрастом.

Общие сведения

Мышцами называют специальные органы животных и человека, за счет сокращения которых мы можем двигаться. Образованы они специальными белковыми структурами, которые обладают способностью к сокращению. Нужно сказать, что мышечная система образует комплект вместе с компонентами соединительной ткани, нервами и кровеносными сосудами.

В человеческом теле имеется порядка 600 мышц. Большая часть из них образуют строго симметричные образования по обеим сторонам тела. У среднестатистического мужчины мышечная ткань составляет порядка 42% от общего веса тела, а у женщин эта доля составляет 35% (в среднем). Если же речь идет о пожилых людях, то у них это количество снижается до 30% или менее. У профессиональных спортсменов доля мышечной массы может увеличиваться до 52%, а у атлетов – до 63% и более.

Как мышечная ткань распределяется по конечностям

На нижних конечностях располагается вплоть до 50% всей мышечной ткани. Около 25-30% от ее общего количества крепится к плечевому поясу, и только 20-25% закреплено в области туловища и головы.

От чего зависит степень их развития

Конечно же, мышечная система развита у разных людей по-своему. Зависит она от многих факторов: пол, природная конституция и род деятельности – все имеет значение. Даже у спортсменов мышцы далеко не всегда бывают развиты одинаково хорошо. Заметим, что систематические физические нагрузки всегда приводят к перестройке этой системы. Ученые назвали это явление функциональной гипертрофией.

О названиях

Названия присваивались мышцам и целым их группам на протяжении веков. Чаще всего термины обозначают размер, форму, месторасположение или же иную характеристику того или иного органа. К примеру, большая ромбовидная (форма, размер), квадратный пронатор (функция и внешний вид), ягодичная (месторасположение) мышцы получили свое название именно по этим причинам.

Не следует считать, что их размеры всегда довольно велики. К примеру, существуют мышцы, которые управляют движениями хрусталика глаза. Они весьма миниатюрны и состоят буквально из нескольких мышечных волокон.

Основные сведения о строении мышц

Как и всякая ткань в человеческом организме, они состоят из клеток. Их основной особенностью является сократимость. Все клетки мышечной ткани имеют вытянутую, веретенообразную форму. Сокращения их становятся возможными благодаря специальным белкам (актин и миозин), а энергию они получают от большого количества митохондрий (которые вообще характерны для этой ткани).

После каждого цикла сокращения наступает расслабление, во время которого клетки возвращаются к своему исходному виду. На сегодняшний день выделяют три типа мышечной ткани. Каждая из разновидностей имеет ярко выраженные различия в строении, так как отвечает за весьма специализированные функции в организме человека.

Основные типы мышечной ткани

Скелетные поперечнополосатые мышцы. Чаще всего они крепятся при помощи сухожилий к костям скелета. Именно благодаря им мы можем стоять, говорить, дышать и передвигаться в пространстве. Чаще всего термин «мышечная система человека» обозначает именно эту группу, так как ее работа видна наиболее наглядно.

Название «поперечнополосатые» произошло от их микроскопического строения, которое характеризуется чередованием поперечных полос светлого и темного оттенков (те самые миозин и актин). Эти мышцы нередко называют еще «произвольными», так как они полностью подконтрольны центральной нервной системе нашего организма. Впрочем, состояние тонуса (частичного напряжения) чаще всего не зависит от нашего сознания. Именно в этом состоянии костно-мышечная система человека находится чаще всего.

Сердечная мышечная ткань (миокард). Составляет практически всю массу сердца человека. Ткань образована огромным количеством сильно ветвящихся, переплетенных волокон. У наших далеких предшественников, рыб и амфибий, эта ткань напоминает рыхлую сетку: кровь свободно проходит через нее, попутно отдавая кислород и питательные вещества. У человека же и прочих высших животных за питание сердечной мышцы отвечают коронарные сосуды.

Чем же строение мышечной системы отличается в этом случае? Все дело в том, что каждое волокно поперечнополосатой мышечной ткани – своеобразная «цепь» клеток, соединенных своими свободными концами. Как и в предыдущем случае, все они отличаются поперечной окраской. Как можно догадаться, эта ткань является непроизвольной, так как человек (за исключением специально тренированных людей) не может сознательно управлять сокращениями своего сердца.

Важно! Нередко в учебных пособиях задается каверзный вопрос о том, стенки каких полых внутренних органов содержат волокна поперечнополосатой мускулатуры… Правильный ответ – в артериях, аорте и конечном отделе прямой кишки. Артериям и аорте эти мышцы придают необходимую упругость и тонус. Что же касается прямой кишки, то именно мышечная система органов, которая может быстро сокращаться, делает возможным акт дефекации.

Гладкая мышечная ткань. Своим названием обязана тому факту, что ее волокна не имеют поперечного рисунка. Кроме того, ее миофибриллы не имеют той жесткой структурной организации, коя характерна для вышерассмотренных типов. Каждое из них имеет ярко выраженную веретенообразную форму, ядро в каждой клетке располагается строго центрально. Эта ткань входит в состав многих сосудов, внутренних полых органов, мочеполовой, дыхательной системы и прочих.

Чем же еще характеризуется строение мышечной системы человека в этом случае?

Особенности гладкой мышечной ткани

Чаще всего клетки в этом случае образуют продолжительные, массивные тяжи в стенках органов. Меж собой они соединяются при помощи прослоек соединительной ткани. Весь пласт пронизан нервными волокнами и кровеносными сосудами, посредством которых осуществляется трофика и иннервация соответственно. Как и в случае с сердечной тканью, гладкое мышечное волокно является непроизвольным, так как напрямую наше сознание его не контролирует.

В отличие от всех описанных выше разновидностей, характеризуются тем, что крайне медленно сокращаются, а затем настолько же медленно расслабляются. Это свойство крайне ценно, так как значение мышечной системы в этом случае — перистальтические движения нашего желудочно-кишечного тракта.

Ритмические, медленные сокращения стенок этих внутренних органов обеспечивают равномерное и качественное перемешивание их содержимого. Если бы за эти функции отвечала поперечнополосатая мускулатура, то содержимое того же кишечника достигало бы «финальной точки» всего за несколько минут, так что ни о каком пищеварении речи бы и не шло.

Способность же к длительному их сокращению также чрезвычайно важна: именно она позволяет надолго задерживать выход желчи из желчного пузыря или мочи из пузыря мочевого соответственно. Если у человека имеются какие-то болезни мышечной системы, связанные с дегенеративными процессами в ткани, у него с вероятностью 100% будут проблемы с органами пищеварения и выделения.

Именно тонус гладкой мышечной ткани в стенках крупных кровеносных сосудов определяет их диаметр и, соответственно, уровень кровяного давления. Соответственно, гипертоники страдают именно от слишком сильного сужения их просвета, когда кровяное давление опасно возрастает. При бронхиальной астме наблюдается практически та же самая картина: из-за каких-то факторов внешней среды (аллерген, стресс) возникает резкий спазм гладкой мускулатуры в стенках бронхов. В результате человек не может дышать, так как специфика данной ткани не предполагает быстрого расслабления.

Кстати, а за счет чего строение мышечной системы человека столь специфично? Конечно же, все зависит от элементарного ее строения, которое мы сейчас и обсудим.

Частные сведения о строении мышечной ткани

Как мы уже и говорили, центральным элементом мышечного волокна является клетка. Ее научное название – симпласт. Характерна своей веретенообразной формой и впечатляющими размерами. Так, длина одной клетки (!) может доходить до 14 сантиметров, тогда как ее же диаметр редко превышает несколько микрометров. Группы волокон плотно укрыты сарколемой, оболочкой.

Отдельные волокна также прикрыты соединительнотканной оболочкой, которую пронизывают кровеносные и лимфатические сосуды, а также веточки нервов. Пучки мышечных волокон и образуют мышцы, каждая из которых опять-таки закрыта соединительнотканной оболочкой, на каждой из полюсов переходящей в сухожилия (в случае поперечнополосатой ткани), посредством которых осуществляется закрепление на скелетных костях. Именно через сухожилия усилие передается на скелет. Сама мышечная система организма выполняет роль рычага.

Так мы можем двигаться и выполнять любые движения, которые требуются в какой-то определенный промежуток времени.

Управление мышечной активностью

Сократительная активность большей части мышечных клеток контролируется при помощи мотонейронов. Тела этих нейронов лежат в спинном мозге, а их аксоны, то есть длинные отростки, подходят к мышечным волокнам. Точнее говоря, каждый аксон идет к определенной мышце, и на входе в нее разветвляется на множество отдельных веточек, каждая из которых отвечает за иннервацию конкретного волокна. Именно поэтому костно-мышечная система человека (тренированного) работает с невероятной точностью.

За счет такого строения один нейрон контролирует целую структурную единицу, которая работает как одно целое. Так как каждая мышца состоит из десятков подобных моторных единиц, она может работать не целиком, а только лишь теми частями, участие которых требуется в конкретный момент. Чтобы лучше понимать строение мышечной системы в целом, нужно разбираться в нюансах на клеточном уровне. Мышечная же клетка, как вы уже наверняка поняли, в значительной степени отличается от обычной.

Характеристики клеточного строения

Начать стоит с того, что каждое волокно имеет несколько ядер. Такое строение связано с особенностями развития плода. Кстати, как вообще происходит развитие мышечной системы? Симпласты образуются из своих предшественников, миобластов. Последние характеризуются быстрым делением, в ходе которого они сливаются с образованием специфических мышечных трубок, которые характеризуются центральным расположением ядер. После этого начинается усиленный синтез миофибрилл (тех самых сократительных элементов), а затем ядра мигрируют на периферию клетки.

К этому времени они уже не могут делиться, а потому основная их функция – «поставка» информации для синтеза клеточного белка. Нужно заметить, что далеко не все миобласты во время своего развития сливаются друг с другом. Некоторая их часть представлена обособленными клетками-сателлитами, которые расположены прямо на поверхности мышечных волокон. Точнее говоря, они расположены прямо в сарколеме.

Эти клетки не утрачивают способности к делению и воспроизведению, а потому именно за их счет обеспечивается обновление и наращивание мышечной ткани на протяжении всей жизни человека. Многие генетические заболевания мышечной системы как раз-таки и развиваются на фоне нарушения процессов синтеза мышечного белка.

Кроме того, именно сателлиты ответственны за восстановление мышц при любом их повреждении. Если волокно погибло, они активизируются и превращаются в миобласты. А затем все происходит по-новому: они делятся, сливаются, образуют новые мышечные клетки. Проще говоря, регенерация мышцы полностью повторяет цикл ее развития во внутриутробный период.

Миофибриллы, механизм их функционирования

Какие еще существуют особенности мышечной системы? Кроме прочего, в цитоплазме клеток этой ткани есть множество тонких волоконец, миофибрилл. Они расположены строго упорядоченно, параллельно друг другу. В каждом волокне их может быть до двух тысяч.

Именно миофибриллы и отвечают за основную способность мышцы — сокращение. При поступлении соответствующего нервного импульса они уменьшают свою длину, орган сжимается. Если на них взглянуть под микроскопом, то вы снова увидите все те же самые чередующиеся светлые и темные полосы. При сокращении площадь светлых участков сокращается, а при полном сжатии они исчезают совсем.

В течение нескольких десятков лет ученые не могли дать сколь-нибудь вразумительной теории, которая бы объясняла способ, при помощи которого миофибриллы могут сокращаться. И только лишь полвека назад Хью Хаксли разработал модель скользящих нитей. На данный момент она практически полностью подтверждена экспериментально, а потому является общепринятой.

Основные группы мышц

Если вы учили анатомию хотя бы на базовом уровне, то наверняка помните о существовании трех больших групп, которыми и образована мышечная система человека:

  • Головной и шейный отдел.
  • Мышцы туловища.
  • Мускулатура конечностей.

Заметим, что мы не будем описывать тут все мышцы, так как в противном случае размеры статьи бы сравнялись с объемом анатомического справочника.

Возрастные изменения

Общеизвестно, что с возрастом весь наш организм сильно изменяется. Не является исключением и мышечная система. Так, с увеличением возраста человек начинает интенсивно терять мышечную массу. Волокно «сжимается», удлиняются сухожилия. Не случайно многие физически развитые люди с возрастом становятся очень жилистыми. Интересно, что длина ахиллова сухожилия у стариков составляет порядка девяти сантиметров, в то время как у подростков его размер не превышает трех-четырех.

Наконец, «пышным цветом» начинают проявляться заболевания мышечной системы. Связано это как с возрастными факторами, так и с резким уменьшением диаметра мышечного волокна: орган попросту не справляется с нагрузками, часто возникают микроскопические разрывы и прочие травмы. По этой причине пожилым людям настоятельно рекомендуется воздерживаться от интенсивных физических нагрузок.

www.syl.ru

Мышечная система

Любое внешнее
проявление мозговой деятельности
организма сводится к мышечному действию.
Изучением мышц занимается миология.
Различают два типа мышечной ткани:
гладкая (неисчерченная) и поперечно-полосатая
(исчерченная).

Гладкие мышцы
осуществляют движения стенок внутренних
органов, кровеносных и лимфатических
сосудов. В стенках внутренних органов
мышцы, как правило, располагаются в виде
двух слов: наружного продольного и
внутреннего кольцевого. В стенках
артерий они формируют спиралевидные
структуры.

Структурная
единица гладкой мышечной ткани — миоцит
с одним ядром. Функциональная единица
— группа миоцитов, окруженных
соединительной тканью и иннервируемых
нервным волокном, где нервный импульс
передается с одной клетки на другую по
межклеточным контактам (рис. 11). Однако
в некоторых гладких клетках, например,
сфинктер зрачка, иннервируется каждая
клетка.

1

2

3

Рисунок
11. Гладкая мышечная ткань:
1
– нервное волокно; 2 – межклеточный
контакт; 3 – ядро миоцита

Гладкие мышцы
совершают два вида сокращений: длительные
тонические (например, сфинктеры полых
органов или гладкие мышцы кровеносных
сосудов) и относительно медленные
движения, которые зачастую ритмичны
(например, маятникообразные и
перистальтические сокращения кишечника).
Гладкие мышцы обладают автоматией и
сокращаются под влиянием импульсов,
возникающих в нервно-мышечных элементах
самих органов.

Гладкие мышцы
отличаются пластичностью, — после
растяжения они долго сохраняют длину,
которую получили в связи с растяжением.

Структурной
единицей исчерченной мускулатуры
являются поперечно-полосатые цилиндрической
формы многоядерные мышечные волокна
длиной от 1 до 40 мм, толщиной до 0,1 мм.
Ядра в волокне располагаются по периферии
(рис. 12).

1

1
2

Рисунок
12. Поперечно-полосатые мышечные волокна:
1 – ядро
волокна; 2 – нервное волокно

Саркоплазма
волокна содержит много митохондрий и
большое количество миоглобина — белка,
который подобно гемоглобину может
связывать кислород. В зависимости от
толщины волокон и содержания в них
миоглобина различают красные, белые и
промежуточные поперечно-полосатые
мышечные волокна. Белые волокна самые
толстые они сокращаются быстрее, но
быстрее устают, т.к. содержат меньше
всего миоглобина и митохондрий. Красные
волокна более других богаты миоглобином
и митохондриями, что позволяет им
сокращаться длительнее, однако, они
самые тонкие. У человека мышцы содержат
все типы волокон; в зависимости от
функции мышцы в ней преобладает тот или
иной тип волокон. У длительно летающих
птиц, например, в грудных мышцах
преобладают красные волокна, в то время
как у кур — белые.

Каждое мышечное
волокно несет на себе чувствительное
нервное окончание и моторную бляшку,
через которую передается импульс к
сокращению мышцы.

Чувствительные
нервные окончания воспринимают «мышечное
чувство» — информацию о тонусе мышечных
волокон, степени их сокращения, а в
сухожилиях — «сухожильное чувство» —
напряжение — и передают его по нервам
в мозг.

Скелетные мышцы
мало пластичны, они сокращаются сразу
же после прекращения их растяжения.
Скелетные мышцы приводят в движение
кости, активно изменяют положение тела
человека и его частей, участвуют в
образовании стенок грудной, брюшной
полостей, таза, входят в состав стенок
глотки, верхней части пищевода, гортани,
осуществляют движения глазного яблока
и слуховых косточек, дыхательные и
глотательные движения. Скелетные мышцы
удерживают тело человека в равновесии,
перемещают его в пространстве. Общая
масса скелетной мускулатуры у взрослого
человека составляет 30–35% массы тела
(рис. 13).

Рисунок
13. Мышечная система человека

Систематическая
интенсивная работа мышцы способствует
увеличению массы мышечной ткани. Это
явление названо рабочей гипертрофией
мышцы. В основе гипертрофии лежит
увеличение массы цитоплазмы мышечных
волокон и число содержащихся в них
миофибрилл, что приводит к увеличению
диаметра каждого волокна. Увеличению
числа миофибрилл способствует
преимущественно статическая работа,
требующая большого напряжения (силовая
нагрузка). Динамическая мышечная работа,
производимая без особых усилий, не
вызывает гипертрофии мышцы.

У тренированных
людей, многие мышцы которых гипертрофированы,
мускулатура может составлять до 50% массы
тела.

У человека около
400 поперечно-полосатых мышц, сокращающихся
произвольно под воздействием импульсов,
поступающих по нервам из ЦНС.

Мышечные пучки
формируют брюшко мышцы, переходящее в
сухожильную часть. Головка мышцы
начинается от одной кости, сухожилие
(хвост) — прикрепляется к другой кости
(рис. 14).

1

2

3

Рисунок
14. Веретенообразная мышца:
1
– головка мышцы; 2 – брюшко мышцы; 3 –
сухожилие

Сухожилие мало
растяжимо, обладает значительной
прочностью и выдерживает огромные
нагрузки. Сухожилие четырехглавой мышцы
бедра способно выдержать растяжение
силой в 600 кг, Ахиллово сухожилие — 400
кг. Это возможно благодаря строению
плотной оформленной соединительной
ткани, из которой образованы сухожилия:
параллельные пучки коллагеновых волокон
составляют пучки первого порядка. Рыхлая
волокнистая неоформленная соединительная
ткань окутывает несколько пучков первого
порядка, образуя пучки второго порядка,
которые все вместе снаружи покрыты
футляром из плотной волокнистой
соединительной ткани.

Форма мышц зависит
от выполняемой функции. Различают
следующие формы мышц:

веретенообразные
(конечностей), лентовидные (стенок
туловища), одно-, дву- и многоперистые
(дельтовидная), дву-, трех-, четырехглавые,
двубрюшная, циркулярные (сжиматели
вокруг отверстий тела человека) (рис.
15).

Рисунок
15. Формы мышц:
1
— веретенообразная; 2 — лентовидная; 3
— многоперистая; 4 — двуглавая;

5
— двубрюшная; 6 — циркулярная (круговая
мышца рта)

Мышцы могут
прикрепляться к смежным костям и
действовать на один сустав или иметь
длинные сухожилия, которые перекидываются
через два и большее число суставов.
Некоторые мышцы прикрепляются к костям,
не соединяющимся между собой при помощи
сустава (челюстно-подъязычная мышца),
другие только одним своим концом
прикрепляются к костям (мышцы языка).
Некоторые мышцы вплетаются в кожу или
другие ткани.

Мышцы снабжены
вспомогательными аппаратами: фасции,
фиброзные и синовиальные влагалища
сухожилий, синовиальные сумки, блоки.
Фасция — это соединительно-тканная
оболочка мышцы, ее чехол. Фасции
отграничивают мышцы друг от друга,
выполняют механическую функцию, создавая
опору для брюшка при сокращении, ослабляют
трение мышц.

studfiles.net

Мышечная система

Мышечная ткань
составляет от 1/3
до
1/2 массы
тела любого позвоночного. Нервная
деятельность, даже ее высшие процессы,
происходящие в человеческом мозге,
проявляется главным образом в форме
сокращения мышечных волокон, т.е. мышечная
система является исполнителем нервной
системы. Основные функции организма —
от локомоции до кровообращения — связаны
с мышечной активностью, главный результат
которой — это движение туловища,
конечностей, челюстей, какого-нибудь
органа или его части. Но также важны и
вспомогательные функции мышечной
системы: поддержание тела или его части
в определенном положении, теплопродукция
и создание электрического поля.

Мышечная ткань
делится на два типа:
гладкую
(
входит в состав внутренних органов и
стенки кровеносных сосудов и иннервируется
вегетативной нервной системой) и
поперечнополосатую
( входит в состав соматических систем
и сердца и иннервируется , за исключением
сердца, соматической нервной системой).

Мышцы состоят из
множества удлиненных клеток — мышечных
волокон
,
способных сокращаться и расслабляться.
Расслабленную мышцу можно растянуть,
но благодаря своей эластичности она
после растяжения способна возвратиться
к исходным размерам и формам. Мышцы
хорошо снабжаются кровью, которая
доставляет им питательные вещества и
кислород и удаляет отходы метаболизма.
Приток крови к мышцам регулируется
таким образом, что в каждый данный
момент мышца получает ее в необходимом
количестве. Все мышцы имеют самостоятельную
иннервацию.

Все мышцы позвоночных
можно разделить на три группы: скелетные,
гладкие и сердечная мышцы.

Поперечно-полосатые
мышцы

Поперечно-полосатая
мышца состоит из множества функциональных
единиц — мышечных клеток, которые
сливаются и образуют мышечный синцитий
или мышечное волокно. Они имеют
цилиндрическую форму и расположены
параллельно друг другу. Это многоядерные
клетки 0,01-0,1 мм в диаметре, достигающие
несколько см в длину. Ядра в волокне
расположены около его поверхности.
Пучки мышечных волокон окружены
коллагеновыми волокнами и соединительной
тканью. Между волокнами также находится
коллаген. Каждое волокно окружено
мембраной — сарколеммой,
которая по
своему строению очень сходна с обычной
плазматической мембраной.

В мышечных волокнах
содержится большое количество миофибрилл,
которые и создают характерную поперечную
исчерченность . Каждая миофибрилла
состоит из белковых нитей двух типов —
актиновых и
миозиновых
.
Между миофибриллами находится множество
митохондрий. Цитоплазма мышечного
волокна называется саркоплазмой
и содержит сеть внутренних мембран
сакроплазматический
ретикулум

. Поперек волокна и между миофибриллами
проходит система трубочек, называемая
Т-системой

, которая связана с сарколеммой и
саркоплазматичесикм ретикулумом .
Саркоплазматичесикй ретикулум участвует
в захвате и высвобождении ионов кальция,
в результате концентрация этих ионов
в саркоплазме снижается или увеличивается,
что в свою очередь влияет на сократительную
функцию мышечного волокна.

В световой микроскоп
видна лишь поперечная исчерченность
миофибрилл. Это выглядит как правильное
чередование светлых и темных полос,
названных соответственно зонами
(или дисками)

I
и
А.
По середине
каждой зоны проходит тонкая темная
линия. Электронно-микроскопическое
исследование ясно показывает, что
исчерченность обусловлена определенным
расположением нитей актина (тонких) и
миозина (толстых) .

Зона I
разделена на две половинки темной линией
Z.
Участок миофибрилы между двумя линиями
Z
называется саркомером.
В обе стороны от линии Z
отходят актиновые нити, а в середине от
саркомера находятся миозиновые нити.
В определенных участках саркомера
актиновые и миозиновые нити перекрываются.
Такое взаиморасположение нитей приводит
к появлению в саркомере нескольких
дисков (полос). Там, где актиновые и
миозиновые нити перекрываются, они
образуют диск А, в то время как в районе
диска I
находятся только актиновые нити.

Реакция типа
«все или ничего»

При раздражении
скелетного мышечного волокна оно будет
сокращаться лишь в том случае, если
стимулирующий импульс достигнет
определенной пороговой величины или
превысит ее. И это сокращение будет для
данных условий максимальным. Даже
значительное увеличение силы раздражителя
не приведет к большему укорочению
волокна или увеличению развиваемой им
силы. Такое явление называют реакцией
«все или ничего». Слабый раздражитель,
не способный вызвать сокращение мышечного
волокна, называется подпороговым.

После окончания
ответа наступает период абсолютной
рефрактерности
,
когда волокно не способно сокращаться.
Затем следует период относительной
рефрактерности.

В это время только сильный стимул может
вызвать сокращение. Период рефрактерности
представляет собой отрезок времени, в
течение которого происходит восстановление
исходного состояния мышечного волокна.

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о