Как выглядит мышца: Мышцы человеческого тела | NORTHWAY Вильнюс

Содержание

Мышцы человеческого тела | NORTHWAY Вильнюс

Тело человека состоит из различных групп мышц. Мы должны быть благодарны нашим мышцам за возможность дышать, двигаться, жевать, видеть, разговаривать, смеяться, плакать и делать еще множество других вещей. Побеседуем подробнее на эту тему с семейным врачом, доктором медицинских наук Астой Маставичюте из медицинского центра Northway.

Что такое мышцы?
Движение – это основное свойство живых организмов, а мышцы тела играют самую главную роль. Движение, в независимости от его амплитуды, является характерной функцией организма, которое осуществляется с помощью сокращения и расслабления мышц. Мышцы составляют около 40% массы тела мужчин и около 23% массы тела женщин. Если мышцы оценивать с точки зрения единого целого, то они являются самым большим образованием из всех внутренних органов тела человека. Не будь у нас мышц, было бы сложно сделать что-либо. Абсолютно все, что мы осознаем разумом, выражено в движении мышц.

Любое движение совершается, благодаря передаче нервных импульсов в мышечное волокно. Вместе с нервной системой мышцы потребляют наибольшее количество энергии тела, поскольку выполняют механическую работу. Мышечная масса на 70-80% состоит из воды, на 17-21% из белков и на 3-4% из других веществ.

Самая большая мышца – это широкая мышца спины, самая крепкая – жевательная или челюстная мышца, а к наиболее активным относится глазная мышца.

Какие бывают типы мышц?

В теле каждого здорового человека есть около 850 мышц, но большинство людей, говоря о мышцах, думают лишь о тех, которые можно увидеть. Например, многие из нас знают, что в руках есть бицепсы.

Мышцы подразделяют на три типа: поперечнополосатые, гладкие мышцы и сердечные поперечнополосатые мышцы. Мышцы различных типов выполняют разные функции: поперечнополосатые мышцы связаны с активным движением человека и зависят от воли человека. Это мышцы, которые мы видим и чувствуем. Культуристы, стремящиеся нарастить мышечную массу, тренируют именно эти мышцы.

Все мышцы тела работают в паре. Мышцы, которые при сокращении выполняют движение в одном направлении, называются синергистами, а те, которые совершают движения в обратном направлении – антагонистами. Работа мышц зависит от координированной работы мышц-синергистов и антагонистов, которую регулирует нервная система. Поперечнополосатые мышцы двигаются по воле человека, посылая сознательный сигнал в мозг. Эти сигналы передаются по соматическим нервам. Поперечнополосатые мышцы крепятся с помощью суставов и связок, и поэтому человек может двигаться. Гладкие мышцы путем сокращений помогают выполнять такие «внутренние» функции человека, как пищеварение, дыхание, удаление и т.д. Гладкие мышцы выполняют различные движения внутренних органов, и расположены, как правило, в стенках таких органов, включая и стенки кровеносных сосудов. Гладкие мышцы двигаются непроизвольно, повинуясь автоматическим импульсам, исходящим из центральной нервной системы и посылаемым через вегетативную нервную систему, не думая об этом сознательно.
Гладкие мышцы присутствуют в стенках внутренних органов: кровеносных сосудах, кишечнике, бронхах, в коже, глазах и пр. Функция сердечной мышцы практически не зависит от воли человека. Сердечная мышца присутствует только в сердце, а ее основными свойствами являются выносливость и последовательность. Это одна из самых сильных мышц у человека, безустанно качающая кровь и обеспечивающая весь организм жизненно важным кислородом и питательными веществами.

Какие функции выполняют мышцы? Мышцы, как и автомобили, состоят из множества мелких компонентов – деталей, работающих вместе и зависящих друг от друга, и не дающих пользы по отдельности. Основной структурной единицей мышц является мышечная клетка, или иначе говоря, мышечное волокно. Мышечные волокна образуют мышечные ткани, формируя целую мышцу, а их количество зависит от размера мышцы и выполняемой функции. Мышцы выполняют следующие функции: поддерживают тело и внутренние органы, дают возможность двигаться телу, его отдельным частям и органам, защищают внутренние органы.

Мышцы напрягаются вокруг поврежденного (перегруженного) участка тела, так защищая ее от еще больших нагрузок. Около 70% боли в теле исходит от мышц и связок. Мышцы принимают участие в кровотоке. Сокращаясь, мышцы толкают кровь по венам вверх, в сторону сердца. Работающие мышцы выделяют тепло, которое помогает поддерживать температуру тела.

Что вызывает мышечные спазмы?

Как правило, мышечные спазмы вызывает чрезмерная нагрузка, растяжение, ушиб или разрыв мышц, возникшие в результате различных травм. Боль охватывает конкретные мышцы в одной области. Она начинается во время нагрузки или сразу после нее. Как правило, бывает понятно, какая деятельность вызывает мышечную боль. Мышечная боль также является признаком заболевания всего организма, например, при различных вирусных заболеваниях (включая грипп), неполноценного питания, которое влияет на соединительные ткани всего организма. К наиболее распространенным причинам мышечной боли относятся:

  • напряжение или стресс;
  • чрезмерное напряжение: слишком интенсивное, частое или неподходящее использование мышц;
  • ушиб или травма;
  • неправильная осанка;
  • употребление лекарств;
  • инфекции или воспаления;
  • аутоиммунные или ревматоидные заболевания.

При какой мышечной боли стоит забеспокоиться и обратиться к врачу?

Степень мышечной боли может меняться от несильной до невыносимой, даже в независимости от заболевания. Если мышечная боль не связана с другим заболеванием и длится более 2-3 дней, в таком случае нужно обратиться к врачу. Это очень важно еще и в том случае, если вокруг мышцы наблюдается отек, покраснение, она вызывает боль при прикосновении, в ней ощущается тепло или даже жар. Общее правило заключается в том, что, если болят мышцы и температура держится более двух-трех дней, необходимо проконсультироваться с врачом.

В чем заключается профилактика мышечной боли?

Для предупреждения возникновения мышечной боли или травм необходимо чаще заниматься спортом, делать разминку перед тренировками, а после тренировок дать мышцам остыть. Перед и после тренировки рекомендуется сделать упражнения на растяжку мышц. После разминки, физическую нагрузку надо увеличивать постепенно, шаг за шагом.

Делая физическую работу или тренируясь, не стоит делать резких и быстрых движений. Тем, кто большую часть дня проводит в одном положении (например, сидя за компьютером), рекомендуется делать перерывы и упражнения на растяжку. Кроме того, необходимо избегать резких изменений температуры и сквозняков.

Как устроены мышцы? И за счет чего они растут / Хабр

Пандемия заставила нас вести менее подвижный образ жизни. Мы закрылись дома, перестали бегать по утрам (я не бегал, но вдруг, в отличие от меня у вас были на это силы). Это поспособствовало накоплению запасов к зиме (или к лету, если вы живете в Австралии), и особенно ударило по тем, кто пытается держать себя в форме. В эти липофильные (буквально — сродство к жирам) времена мы начинаем чаще задумываться о том, что пора бы заняться какой-нибудь двигательной активностью даже не выходя из дома: покачать пресс, поотжиматься, скачать наконец фитнесс приложение (о них подробнее тут), или пойти в зал — это для совсем бесстрашных. В связи с этим мне хотелось бы поговорить о нескольких вещах, которые важно знать, чтобы лучше понимать, как тренировки воздействуют на наше тело и почему к одним нагрузкам оно хорошо приспособлено, а к другим — нет.

В этой статье мы поговорим о мышцах, о том какие они бывают и за счет чего растут

Строение мышечной ткани


Мышцы относительно сложно устроены. Они представляют из себя совокупность мышечных волокон, объединённых в пучки, покрытые соединительной тканью (перимизием). Все вместе пучки окружены плотной оболочкой из соединительной ткани (эпимизием). При этом перимизий не только отделяет один пучок от другого, но и соединяет их с эпимизием. Обе эти оболочки достаточно плотные. В каждом пучке находятся обособленные мышечные волокна, каждое из которых покрыто рыхлой, куда менее плотной соединительной тканью (эндомизием). Эндомизий как бы связывает мышечные волокна внутри пучка. Артерии, проходя через эпимизий начинают ветвится в перимизии, распадаясь на отдельные капилляры в эндомизии.

На рисунке хорошо видно, что большую часть мышечной клетки занимают сократительные структуры, однако базовые органеллы, такие как ядра, эндоплазматический ретикулум тоже присутствуют. Митохондрии, увы не нарисованы, но они там тоже есть. Стоит сказать, что в зависимости от функции, на них может приходиться существенная часть мышечной клетки, ведь именно они ответственны за синтез большей части необходимой мышцам для сокращения энергетической молекулы АТФ.

Какие бывают мышцы?


Существует несколько классификаций мышц: по форме, числу головок, положению, месту прикрепления и направлению мышечных пучков.

Остановимся на классификации мышц по направлению мышечных пучков, так как именно она обьясняет достаточно сильное отличие в силовых возможностях мышц (а это нас и интересует).

В веретенообразных мышечных пучках волокна расположены параллельно длинной оси мышцы (например, бицепс). При перистом расположении мышечные волокна расположены под углом к длинной оси (идеальные примеры — икроножная и камбаловидная мышцы). Давайте посмотрим как это выглядит.


Слева — веретенообразная мышца, справа — двуперистая

За счет перистого строения в одной мышце удается упаковать куда больше мышечных волокон одинакового объема, чем в веретенообразных мышцах того же диаметра. Соответственно, мышцы с перистым расположением волокон обладают куда большей «силой тяги».

Тут замечательный пример — икроножная и камбаловидная мышцы. За счет своего перистого строения они в 6 и, соответственно, 12 раз сильнее веретеновидных мышц аналогичного диаметра. Это и логично, ведь им необходимо поднимать вес всего тела при каждом новом шаге.

Однако, у перистых мышц есть и существенный недостаток. За счет того, что волокна расположены под углом к длинной оси мышцы, сама мышца сокращается меньше чем отдельное волокно. По сути, изменение длины всей мышцы при сокращении равняется изменению длины волокна, умноженному на косинус угла перистости. Чаще всего угол перистости находится в диапазоне от 2 до 27 градусов. Камбаловидная мышца, расположенная прямо под икроножной, имеет угол перистости в 27 градусов (cos = 0.89). Соответственно, при сокращении мышечных волокон внутри камбаловидной мышцы на x см, реально длина мышцы сократится на 0.89x см. Такое расположение волокон снижает скорость сокращения перистых мышц.

Иначе говоря, перистые мышцы нужны там, где речь идет о преодолении большой силы на малом пути. Например, при подъеме на носочки амплитуда движения небольшая (если сравнивать ее с разгибанием/сгибанием руки). У нас нет прямой необходимости вставать на носочки с очень большой скоростью, если, конечно, вы не увлекаетесь балетом. Однако, в целом вставать на носочки нам приходится довольно часто. Соответственно, мышцы, которые отвечают за подъем, должны поднимать вес всего тела, пусть даже и в ущерб скорости. Сгибателям и разгибателям рук тоже нужно быть сильными, но им точно нельзя жертвовать скоростью, чтобы первым дотянуться до яблока на дереве или оттолкнуть хищника (ну, эволюционно так сложилось).

Поэтому, там, где нужно действовать оперативно, тело чаще использует веретенообразные мышцы.

Быстрые и медленные мышечные волокна


В одной мышце сосуществует несколько типов волокон, которые отличится по таким параметрам, как скорость, сила сокращения и утомляемость. Причина этого лежит в различиях метаболических процессов и в отличиях сократительных элементов. Давайте посмотрим на это явление подробнее:

1. Медленные окислительные (I тип) — красные

Это волокна сравнительно тонкого диаметра, которые имеют низкий порог активации мотонейрона. А значит именно они выполняют обыденные сокращения — ведь мозгу достаточно послать слабую команду для сокращения таких волокон. Также, красные волокна сокращаются относительно медленно (порядка 100-110 мс).

Кровоснабжаются эти волокна хорошо и имеют высокое содержание миоглобина (используется как депо кислорода). Крупные митохондрии позволяют им работать на протяжении более длительного времени.

Название — окислительные, очень логично, поскольку получение энергии ими осуществляется за счет аэробного дыхания (процесс длительный и требует наличие кислорода). Обычно это подразумевает окисление глюкозы до пирувата в процессе гликолиза, с последующим окислением до углекислого газа в цикле Кребса. В результате образуется 38 молекул АТФ из 1 молекулы глюкозы.

Красные волокна выполняют основную работу когда вы печатаете на клавиатуре, идете на работу или даже бегаете по утрам (только если не очень быстро).

2. Быстрые гликолитические волокна (II тип) — белые

Волокна данного типа в целом более толстые и сильные и куда больше подвержены гипертрофии (увеличению в размере). Для них характерна большая скорость сокращения (порядка 50 мс), но и большая утомляемость.

Название гликолитический происходит от основного способа получения ими энергии (в результате гликолиза). Данный способ позволяет получить АТФ быстро и не требует кислорода, то есть, является анаэробным. Однако, у него низкая эффективность — всего 2 молекулы АТФ из 1 молекулы глюкозы.

Для белых волокон характерен высокий порог активации мотонейрона. Это значит, чтобы задействовать данный тип волокон, мозг должен послать сильную команду на сокращение. Получается, что в обычной жизни, такие волокна слабо задействованы.

В разных мышцах доля белых волокон различается. Так, например, в уже упомянутых икроножных — быстрых волокон довольно мало, поскольку икры чаще всего выполняют монотонную работу и должны быть довольно выносливыми. А вот у разгибателей плеча (трицепса) большинство волокон — белые, ведь сокращаться ему нужно быстро. Будь мы в дикой природе, я бы сказал, что такие волокна в основном отвечают за реализацию стратегии бей, или беги.

Среди быстрых волокон выделяют два подтипа.

IIа тип: быстрые окислительно-гликолитические, или просто быстрые окислительные волокна. По сути это почти те же быстрые волокна, но чуть меньшей толщины. Они более выносливы, чем волокна IIb типа, но утомляются быстрее, чем волокна I типа. При сокращении данный тип волокон развивает среднюю силу, используя в качестве источников энергии как окислительные (используются медленными), так анаэробные механизмы (используются быстрыми волокнами).

IIb тип: быстрые гликолитические волокна — толстые, быстрые, сильные волокна. Для них характерна быстрая утомляемость и высокий порог активации мотонейрона. Для получения энергии используют те же механизмы, что и быстрые волокна.

На рисунке сверху показано условное распределение быстрых и медленных волокон, а так же указаны типичные примеры мышц с преобладанием конкретного типа волокон.

Увеличение мышечной массы: гипертрофия или гиперплазия?


Количество волокон в одной и той же мышце у разных людей может существенно отличаться. Изначально считалось, что число мышечных волокон генетически детерминировано и не меняется в течение жизни. Соответственно и мышечный рост обусловлен не увеличением числа мышечных волокон, а увеличением их диаметра (гипертрофия).

Однако в последнее время появляется все больше работ, показывающих возможность увеличения числа волокон (гиперплазия) у животных, например, у птиц. Обычно, причиной гиперплазии у животных служит экстремальное растяжение мышц на протяжении длительного времени (от пары часов, до нескольких суток). Если кто-то подумал, что есть птицы, приверженцы экстремальной йоги — спешу вас разочаровать. Эти экстремальные растяжения являются частью экспериментов и достигаются не самым приятным образом.

Так за счет какого процесса происходит развитие и рост мышц у нас с вами?

Существующие работы по исследованию мышечного роста у человека показывают, что именно увеличение толщины волокон является причиной увеличения объема его мышц. И именно силовые нагрузки приводят к гипертрофии мышечных волокон человека. Роль гиперплазии же, скорее всего незначительна, если она вообще имеет место (сложно представить себе человека, который без остановки (в течение пары суток) растягивает одну и ту же мышцу).

Почему разные мышцы растут по разному?

Наиболее привычный и понятный для нас способ тренироваться — это обычные силовые тренировки. Под воздействием таких тренировок происходит гипертрофия быстрых и части промежуточных волокон (IIa), в то время, как медленные волокна чаще остаются за бортом.

Тогда как гипертрофировать мышцы с преобладанием медленных волокон?

Все просто, нужно выполнять упражнения в многоповторном режиме. Для примера возьмем икры (в них много медленных волокон). Хорошим подходом к тренировке этих мышц будут упражнения, которые можно выполнять неспеша в течение минуты (или более, в зависимости от вашей тренированности). Для примера возьмем подъёмы на носочки. За минуту получится примерно 30-40 повторений — это по сути тренировка на выносливость.

А что тогда насчет обычных силовых тренировок? Ведь в икрах все еще остаются быстрые волокна, которые тоже хочется гипертрофировать.

Хотя многоповторные нагрузки и оказывают на икры наибольший эффект (в отличие от, например, на грудных мышц), для достижения максимального эффекта можно разбавлять их редкими, но «тяжелыми» тренировками с числом повторов от 8 до 20. В таком случае можно использовать утяжелители или просто выполнять позитивную фазу (вставать на носочки) в максимально быстром темпе. Такой подход поможет максимально включить быстрые волокна.

А как обеспечить рост мышц с быстрыми волокнами?

Например, вы хотите гипертрофировать трицепс (помним, что в нем много быстрых волокон). Это значит, что эффективными будут подходы с малым, и средним числом повторов и большой нагрузкой (50-80% от одноповторного максимума). При этом, длительность подхода не должна превышать 25-30 секунд, так как к этому времени уже успевает закончится АТФ и потихоньку подходят к концу запасы креатин фосфата (еще один вид топлива для быстрых волокон). После этого необходим отдых в 60-120 секунд (этого хватает, на ресинтез запасов топлива для быстрых волокон). С другими мышцами, с преобладанием быстрых волокон примерна такая же картина.

В довесок скажу, что с распределением волокон все не так просто. Есть еще ряд факторов (таких как пол, возраст и т.д.), которые могут оказать существенное влияние на соотношение мышечных волокон в мышцах человеческого тела.

Подробнее об этих и других аспектах, связанных с соотношением типов мышечных волокон в теле мы поговорим в следующей статье.

P. S. Вы уже наверное поняли, что эта тема достаточно сложная и применять эти знания не так уж просто. Но мы с друзьями заморочились и недавно запилили фитнесс приложение на основе ИИ, и написали об этом небольшую статью. Оно в самом начале оценивает точку старта человека и на основе его физических особенностей создает индивидуальные тренировки.

Если влезть под капот, то мы увидим, что алгоритм учитывает сколько времени должны длиться подходы, чтобы привести именно к гипертрофии, при этом нагрузка калибруется так, чтобы человек реально мог все выполнить. И да, он не выплёвывает легкие после первой тренировки, и на завтра может ходить + еще куча интересных механизмов на базе спортивной физиологии, о которых мы немного расскажем позже.

Мышцы — это… Что такое Мышцы?

Старинный рисунок мышц человека Строение скелетной мышцы

Мышцы или мускулы (от лат. musculus — мышка, маленькая мышь) — органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 86,3 % из воды.

Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Человек выполняет любые движения — от таких простейших, как моргание или улыбка, до тонких и энергичных, какие мы наблюдаем у ювелиров или спортсменов — благодаря способности мышечных тканей сокращаться. От исправной работы мышц, состоящих из трёх основных групп, зависит не только подвижность организма, но и функционирование всех физиологических процессов. А работой всех мышечных тканей управляет нервная система, которая обеспечивает их связь с головным и спинным мозгом и регулирует преобразование химической энергии в механическую.

В теле человека 640 мышц (в зависимости от метода подсчёта дифференцированных групп мышц их общее число определяют от 639 до 850). Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные — большие ягодичные мышцы, они приводят в движение ноги. Самые сильные мышцы — икроножные(18,6), жевательные(10,2).

По форме мышцы очень разнообразны. Чаще всего встречаются веретенообразные мышцы, характерные для конечностей, и широкие мышцы — они образуют стенки туловища. Если у мышц общее сухожилие, а головок две или больше, то их называют двух-, трёх- или четырёхглавые мышцы.

Мышцы и скелет определяют форму человеческого тела. Активный образ жизни, сбалансированное питание и занятие спортом способствуют развитию мышц и уменьшению объёма жировой ткани.

Строение

Минимальный структурный элемент всех типов мышц — мышечное волокно, каждое из которых в отдельности является не только клеточной, но и физиологической единицей, способной сокращаться. Это связано со строением такого волокна, содержащего не только органеллы (ядро клетки, митохондрии, рибосомы, комплекс Гольджи), но и специфические элементы, связанные с механизмом сокращения — миофибриллы. В состав последних входят сократительные белки — актин и миозин.

Актин — сократительный белок, состоящий из 375 аминокислотных остатков с молекулярной массой 42300, который составляет около 15 % мышечного белка. Под световым микроскопом более тонкие молекулы актина выглядят светлой полоской (так называемые Ι-диски). В растворах с малым содержанием ионов актин содержится в виде единичных молекул с шарообразной структурой, однако в физиологических условиях, в присутствии АТФ и ионов магния, актин становится полимером и образует длинные волокна (актин фибриллярный), которые состоят из спирально закрученных двух цепочек молекул актина. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.

Миозин — основной мышечный белок; содержание его в мышцах достигает 60 %. Молекулы состоят из двух полипептидных цепочек, в каждой из которых содержится более 2000 аминокислот. Белковая молекула очень велика (это самые длинные полипептидные цепочки, существующие в природе), а её молекулярная масса доходит до 470000. Каждая из полипептидных цепочек оканчивается так называемой головкой, в состав которой входят две небольшие цепочки, состоящие из 150—190 аминокислот. Эти белки проявляют энзиматическую активность АТФазы, необходимую для сокращения актомиозина. Под микроскопом молекулы миозина в мышцах выглядят темной полоской (так называемые А-диски).

Актомиозин — белковый комплекс, состоящий из актина и миозина, характеризующийся энзиматической активностью АТФазы. Это значит, что благодаря энергии, освобожденной в процессе гидролиза АТФ, актомиозин может сокращаться. В физиологических условиях актомиозин создает волокна, находящиеся в определенном порядке. Фибриллярные части молекул миозина, собранные в пучок, образуют так называемую толстую нить, из которой перпендикулярно выглядывают миозиновые головки. Молекулы актина соединяются в длинные цепочки; две таких цепочки, спирально закрученные друг вокруг друга, составляют тонкую нить. Тонкая и толстая нити расположены параллельно таким образом, что каждая тонкая нить окружена тремя толстыми, а каждая толстая нить — шестью тонкими; миозиновые головки цепляются за тонкие нити.

Типы мышц

В зависимости от особенностей строения мышцы человека делят на 3 типа или группы.

Первая группа мышц — скелетные, или поперечнополосатые мышцы. Скелетных мышц у каждого из нас более 600. Мышцы этого типа способны произвольно, по желанию человека, сокращаться и вместе со скелетом образуют опорно-двигательную систему. Общая масса этих мышц составляет около 40 % веса тела, а у людей, активно развивающих свои мышцы, может быть ещё больше. С помощью специальных упражнений размер мышечных клеток можно увеличивать до тех пор, пока они не вырастут в массе и объёме и не станут рельефными. Сокращаясь, мышца укорачивается, утолщается и движется относительно соседних мышц. Укорочение мышцы сопровождается сближением её концов и костей, к которым она прикрепляется. В каждом движении участвуют мышцы как совершающие его, так и противодействующие ему, что придаёт движению точность и плавность.

Второй тип мышц, который входит в состав клеток внутренних органов, кровеносных сосудов и кожи, — гладкая мышечная ткань, состоящая из характерных мышечных клеток (миоцитов). Короткие веретеновидные клетки гладких мышц образуют пластины. Сокращаются они медленно и ритмично, подчиняясь сигналам вегетативной нервной системы. Медленные и длительные их сокращения происходят непроизвольно, то есть независимо от желания человека.

Гладкие мышцы, или мышцы непроизвольных движений, находятся главным образом в стенках полых внутренних органов, например пищевода или мочевого пузыря. Они играют важную роль в процессах, не зависящих от нашего сознания, например в перемещении пищи по пищеварительному тракту.

Отдельную (третью) группу мышц составляет сердечная поперечнополосатая (исчерченная) мышечная ткань (миокард). Она состоит из кардиомиоцитов. Сокращения сердечной мышцы не подконтрольны сознанию человека, она иннервируется вегетативной нервной системой.

Классификация

Мышечная ткань живых организмов представлена многочисленными мышцами различной формы, строения, процесса развития, выполняющими разнообразные функции. Различают:

по функции

  • сгибатели (лат. flexores)
  • разгибатели (лат. extensores)
  • отводящие (лат. abductores)
  • приводящие (лат. adductores)
  • вращатели (лат. rotatores) кнутри (лат. pronatores) и кнаружи (лат. supinatores)
  • сфинктеры и делятаторы
  • синергисты и антагонисты

по направлению волокон

  • прямая мышца — с прямыми параллельными волокнами
  • поперечная мышца — с поперечными волокнами
  • круговая мышца — с круговыми волокнами
  • косая мышца — с косыми волокнами
    • одноперистая — косые волокна прикрепляются к сухожилию с одной стороны
    • двуперистая — косые волокна прикрепляются к сухожилию с двух сторон
    • многоперистая — косые волокна прикрепляются к сухожилию с нескольких сторон
    • полусухожильная
    • полуперепончатая

по отношению к суставам

Учитывается число суставов, через которые перекидывается мышца:

  • односуставные
  • двусуставные
  • многосуставные

По форме

  • простые
    • веретенообразные
    • прямые
      • длинные (на конечностях)
      • короткие
      • широкие
  • сложные
    • многоглавые
      • двуглавые
      • трехглавые
      • четырехглавые
      • многосухожильные
      • двубрюшные
    • с определенной геометрической формой
      • квадратные
      • дельтовидные
      • камбаловидные
      • пирамидальные
      • круглые
      • зубчатые
      • треугольные
      • ромбовидные
      • трапециевидные

Сокращения мышц

В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причем длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса — такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ с расщеплением последнего на АДФ и H3PO4.’ Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния. Скелетная мышца состоит из большого количества мышечных волокон — чем их больше, тем сильнее мышца.

Различают два типа мышечных сокращений. Если оба конца мышцы неподвижно закреплены, происходит изометрическое сокращение, и при неизменной длине напряжение увеличивается. Если один конец мышцы свободен, то в процессе сокращения длина мышцы уменьшится, а напряжение не изменяется — такое сокращение называют изотоническим; в организме такие сокращения имеют большее значение для выполнения любых движений.

Из гладких мышц (гладкой мышечной ткани) состоят внутренние органы, в частности, стенки пищевода, кровеносные сосуды, дыхательные пути и половые органы. Гладкие мышцы отличаются так называемым автоматизмом, то есть способностью приходить в состояние возбуждения при отсутствии внешних раздражителей. И если сокращение скелетных мышц продолжается около 0,1 сек, то более медленные сокращения гладких мышц продолжается от 3 до 180 сек. В пищеводе, половых органах и мочевом канале возбуждение передаётся от одной мышечной клетки к следующей. Что касается сокращения гладких мышц, находящихся в стенках кровеносных сосудов и в радужной оболочке глаза, то оно не переносится с клетки на клетку; к гладким мышцам подходят симпатические и парасимпатические нервы автономной нервной системы.

Говоря о сердечной мышце (миокарде), следует отметить, что при нормальной работе она затрачивает на сокращение около 1 сек, а при увеличении нагрузки скорость сокращений увеличивается. Уникальная особенность сердечной мышцы — в ее способности ритмично сокращаться даже при извлечении ее из организма.

Мышцы

См. также

Примечания

Литература

Человеческую мышцу вырастили внутри эмбриона свиньи

Maeng et al. / Nature Biomedical Engineering, 2021

Американские биологи создали химерные эмбрионы человека и свиньи, чтобы вырастить в них человеческие мышцы. Для этого им понадобилась система генетического редактирования CRISPR/Cas9: у свиней удалили гены, отвечающие за развитие мышц, а в человеческих клетках — ген, связанный с апоптозом. Исследователи дорастили химерных зародышей до 27 дней и убедились, что мышечная ткань в них развивается из человеческих клеток, а нервная ткань и половые органы — из клеток свиньи. Работа опубликована в журнале Nature Biomedical Engineering.

Проблему нехватки донорских органов биологи уже неоднократно предлагали решать с помощью животных. Вариантов решения здесь может быть несколько. Можно пересадить собственный орган животного — но иммунная система человека не всегда на такое согласна. 

Можно генетически модифицировать животное, чтобы его клетки больше напоминали человеческие. Мы уже писали о рождении гуманизированных свиней и первой пересадке кожи от такой свиньи человеку. Тем не менее, пока неясно, насколько гуманизированные органы безопасны — например, они могут нести в себе встроенные вирусы, потенциально заразные для человека.

Наконец, можно использовать животное как инкубатор, в котором будут расти человеческие органы. Для этого необходимо создать химерный зародыш, в котором большинство клеток будут принадлежать собственно животному (например, свинье), но некоторые будут человеческими и смогут сформировать необходимый орган.

Добиться такого результата можно с помощью метода комплементации бластоцисты (blastocyst complementation): в зародыш свиньи на ранних стадиях развития вводят несколько человеческих клеток. При этом, если взять модифицированную свинью, у которой выключен ген, отвечающий за развитие какого-нибудь органа, то этот орган ей придется выращивать из одних только человеческих клеток.

Так устроен метод комплементации бластоцисты

Maeng et al. / Nature Biomedical Engineering, 2021

Эту методику уже неоднократно проверяли на мышах, но вот эксперименты с человеческими химерами пока ограничивались созданием химерных зародышей на самых ранних стадиях. Чтобы перейти от них к направленному выращиванию органов, нужно решить три проблемы: 1) найти и отключить гены, отвечающие за развитие органов, у животного-инкубатора 2) научить человеческие клетки приживаться внутри химеры 3) убедиться в том, что человеческие клетки не проникнут в половые органы или мозг животного — потому что в таком случае эксперименты могут не получить одобрение этических комитетов и регуляторов.

Группа исследователей из университета Миннесоты под руководством Дэниэла и Мэри Гэрри (Daniel and Mary Garry) попробовала решить эти проблемы на свиньях. В качестве органа-мишени они выбрали скелетные мышцы — поскольку эту ткань очень сложно получить от донора (после смерти мышцы не пересаживают, а при жизни их непросто удалить). С помощью системы CRISPR/Cas9 исследователи создали модифицированные зародыши свиней, лишенных трех ключевых для развития мышцы генов — MYF5, MYF6 и MYOD. Такие зародыши развивались по меньшей мере до 28-го дня, однако конечности их были сильно деформированы.

Затем авторы работы проверили, можно ли «спасти» модифицированных свиней с помощью комплементации бластоцисты. Для этого в каждый такой зародыш на четвертый день развития добавили по одной клетке обычной свиньи со встроенным геном зеленого флуоресцентного белка. Потом эти химерные зародыши подсадили в матку свиней, и на свет появились химерные животные. Их мышцы были полностью донорскими (флуоресцировали зеленым), но поросята-химеры передвигались и вели себя точно так же, как и обычные животные.

Химера из двух видов свиней (сверху) и обычная свинья (снизу). Внешне животные и их мышцы выглядят одинаково.

Maeng et al. / Nature Biomedical Engineering, 2021

После этого исследователи перешли к созданию человеческих химер. Но они подозревали, что одной-единственной клетки человека может не хватить, чтобы сформировать мышцы в организме свиньи. Поэтому они решили удалить из человеческих клеток какой-нибудь ген, который мог бы мешать им прижиться в зародыше свиньи. Для этого они сравнили экспрессию генов в ранних свиных и человеческих зародышах и нашли 257 отличий в работе генов, связанных с делением и апоптозом. Из них исследователи выбрали ген TP53, который кодирует белок р53 — главный «двигатель» апоптоза — и удалили его с помощью CRISPR/Cas9, а также снабдили клетки зеленым флуоресцентным белком.

Наконец, авторы работы ввели модифицированные эмбриональные человеческие клетки в зародыши модифицированных свиней. Такие клетки действительно лучше приживались и делились, чем обычные (p < 0,0001). Химерные зародыши подсадили в матку свиней и дорастили их до 20 или 27 дня развития. Внешне они выглядели совершенно нормальными.

После этого исследователи измерили содержание человеческих клеток внутри зародышей: оно составило от одной на тысячу до одной на сто тысяч клеток свиньи. При этом 99,2 процента клеток мышц (судя по экспрессии маркера MYOD), которые нашлись внутри зародышей, светились зеленым, то есть мышцы внутри химеры оказались полностью человеческими.

Человеческие клетки в качестве будущих мышц в зародыше свиньи: они светятся зеленым и экспрессируют мышечные маркеры

Maeng et al. / Nature Biomedical Engineering, 2021

Кроме того, исследователей интересовало, встроились ли клетки человека в другие органы свиней. Однако они не обнаружили следов человеческих клеток ни в сердечной мышце, ни в нервной ткани (похожие результаты они получили и для химер из двух видов свиней).

Нервная ткань в зародыше свиньи (красный) не содержит в себе клеток человека (фиолетовый).

Maeng et al. / Nature Biomedical Engineering, 2021

Таким образом, авторам работы удалось получить гуманизированную ткань внутри химерного зародыша. Однако понадобятся дополнительные усилия, чтобы довести этот метод до практического применения. Во-первых, этические ограничения на эксперименты во многих странах не позволяют выращивать эмбрионы с нервной тканью человека дольше 14 дней (подробнее об этом — в нашем тексте «14 дней спустя»). И хотя в данном конкретном эксперименте никаких клеток человека в мозге развивающихся зародышей не нашлось, исследователям еще предстоит это неоднократно подтвердить — а заодно, выяснить, почему так происходит и как это предсказать.

Во-вторых, едва ли кто-нибудь разрешит пересаживать людям клетки без гена ТР53 — одного из главных защитников от опухолевой трансформации. В этом конкретном эксперименте удаление этого гена послужило лишь доказательством того, что генетическая модификация может помочь клеткам выжить внутри химерного зародыша. Однако для применения на практике, вероятно, придется подобрать каких-нибудь других кандидатов на удаление.

В 2019 году мы рассказывали о том, что в Японии одобрили создание химерных эмбрионов из клеток человека и грызунов, а в Китае уже создали (и затем уничтожили) химерные зародыши человека и обезьяны. А осенью 2020 года мы спросили у наших читателей, готовы ли они к появлению химер человека и свиньи — вы можете пройти этот опрос в материале «Свиное сердце» и сравнить результаты с позицией японцев и американцев.

Полина Лосева

Синдром трапециевидной мышцы снять с помощью мануальной терапии в Москве

Синдром трапециевидной мышцы

Боль в трапециевидной мышце не всегда ограничивается только областью мышцы. Например, эта мышца способна вызывать боли уха, глаза или нижних зубов, а ещё — она служит частой причиной головной боли. Причём, все эти боли ощущаются не как отдающие из спины в голову или зубы, а как вполне самостоятельные зубная или головная боль. И, вообще, трапециевидная мышца — это, пожалуй, самый частый источник болей нашего тела. Связано это с тем, что мышца выполняет много различных функций и нередко перегружается.

Переутомление и перегрузка открывают дорогу болезни. Установлено, что боль в трапециевидной мышце обусловлена триггерными точками. По мнению Трэвелл и Симонс — авторов книги о миофасциальном синдроме, триггерные точки трапециевидной мышцы встречаются гораздо чаще, чем у других мышц [Дж. Трэвелл и Д. Симонс «Миофасциальные боли и дисфункции». Том I. С. 353].

Но причина боли трапециевидной мышцы не всегда лежит только в физической плоскости. Эта мышца, как ни одна другая, подвержена влиянию эмоциональных факторов. Однако о психосоматике трапециевидной мышцы и миофасциальном синдроме мы поговорим чуть ниже, в разделе «Симптомы…», а сейчас — анатомия.

Анатомия трапециевидной мышцы

Анатомия трапециевидной мышцы свидетельствует о том, что мышца, действительно, имеет форму трапеции. Если быть точным, трапециевидных мышц у нас две – левая и правая. Каждая, по отдельности — имеет форму треугольника, обращённого вершиной к плечевому суставу, а основанием – к позвоночнику. Соединяясь вместе, у позвоночника, они образуют трапецию. Напомним, что трапеция — это четырёхугольник, у которого две стороны параллельны, а две другие — нет. Кстати, по причине того, что мышц не одна, а две, возможны ситуации, когда трапециевидная мышца болит слева, справа, или с обеих сторон.

Анатомия трапециевидной мышцы предполагает деление мышцы на три части: верхнюю, среднюю и нижнюю. Верхнюю часть, обычно, называют трапециевидной мышцей шеи, а среднюю и нижнюю – трапециевидной мышцей спины. Но, сразу поясним, что это разделение не официальное – для документов, а разговорное – для удобства использования в речи. Вообще, трапециевидная мышца – это одна из наиболее крупных мышц. Начинаясь от затылка, она простирается до нижнего грудного позвонка, при этом, охватывая сверху надплечья, доходит до ключиц.


Функции трапециевидной мышцы

Функции трапециевидной мышцы обеспечивают движения и статику плеча, лопатки и шеи. Например, мы задействуем эту мышцу, если хотим расправить плечи и выпрямить шею или, когда сводим лопатки вместе и запрокидываем голову или, когда двигаем плечами вверх-вниз и вперёд-назад. Во время ходьбы мы размахиваем руками, и мышца работает в динамике, а, если мы сидим за компьютером — в статике. И даже, когда мы просто стоим, опустив руки — мышца тоже работает, чтобы обеспечить антигравитационный эффект. Кстати, именно для того, чтобы снять напряжение и разгрузить трапециевидную мышцу, мы, машинально, складываем руки на груди или кладём их в карманы.

Говоря об антигравитационной функции трапециевидной мышцы, становится ясно, почему, работая за столом, нужно следить, чтобы локти не находились на весу — иначе вес рук будет вызывать перегрузку. А, если это будет повторяться изо дня в день и продолжаться по многу часов, то появления боли не избежать. Это — к вопросу о причине боли трапециевидной мышцы. То же самое можно сказать и в отношении поездок за рулём — локти не должны быть на весу.

«Шейная» функция трапециевидной мышцы обеспечивает повороты и наклоны головы. Поэтому экран монитора и телевизора должны располагаться прямо перед нами. Это тоже предотвратит развитие боли и патологии. И, кстати, привычка придерживать телефон ухом, тоже служит причиной боли трапециевидной мышцы.


Симптомы синдрома трапециевидной мышцы

Симптомы трапециевидной мышцы носят, в основном, болевой характер, это связано с тем, что синдром трапециевидной мышцы является миофасциальным, по своей сути.

Миофасциальный синдром трапециевидной мышцы – это патология, при которой в мышечной ткани образуются небольшие болезненные участки – триггерные точки. Длительное время они могут никак не проявляться, оставаясь в латентном состоянии. Но стоит их активировать, как тут же возникает боль. Фактором активации может стать неудобная поза, резкое движение, перегрузка, состояние голода, переохлаждение или стресс. Кстати, боль, сопряжённая со стрессом и эмоциями, это и есть психосоматика трапециевидной мышцы.

Механизм психосоматических реакций проще понять на примере животных. Черепаха, при опасности, втягивает голову в панцирь, а большинство других — просто, вжимают голову в плечи. Тем самым животные защищают своё самое уязвимое место — шею. Нам тоже, эволюция сохранила этот биологический рефлекс. Именно он, в ответ на стресс, вызывает у нас напряжение многих мышц, но, в первую очередь — трапециевидной. Нетрудно догадаться, что у тех людей, которые испытывают постоянную эмоциональную нагрузку, психосоматика трапециевидной мышцы будет только нарастать. Но, вернёмся к триггерным точкам.

Мы уже говорили, что в трапециевидной мышце триггерные точки возникают чаще, чем в других. При этом существует удивительная закономерность. В 95 % случаев триггерные точки локализуются исключительно в верхней части – в трапециевидной мышце шеи и только 5% — в трапециевидной мышце спины.

Кроме того, у абсолютного большинства людей точки возникают в одних и тех же местах; и таких мест – семь. Это — семь классических триггерных точек трапециевидной мышцы. При этом одни из них могут вызывать боль только в спине и шее, а другие — помимо спины и шеи – ещё и головную боль. Но, давайте перечислим все симптомы синдрома трапециевидной мышцы.

Перечисление симптомов трапециевидной мышцы начнём с шеи. Ведь синдром трапециевидной мышцы является основным источником шейных болей. Чаще всего, боль идёт по заднебоковой поверхности и доходит до черепа. С шеи боль может переходить на висок и боковую поверхность головы, а также — ощущаться позади глазницы или распространяться в затылок. Ещё миофасциальный синдром трапециевидной мышцы может вызвать отраженные боли в ушной раковине (но не в глубине уха), а также — рефлекторное головокружение и вегето-сосудистые кризы.

Следующий симптом трапециевидной мышцы – лицевая боль. Обычно она локализуется в углу нижней челюсти, области жевательных мышц и нижних зубов. Этот синдром хорошо знаком стоматологам.

Нередко боль от трапециевидной мышцы шеи активирует сателлитные триггерные точки, расположенные в других шейных мышцах. Это вызывает головную боль напряжения. Вообще, активация сателлитных точек весьма характерна для трапециевидной мышцы. Чаще всего это происходит с лестничными мышцами. А если активируются точки в мышце поднимающей лопатку и ременной мышце, то возникает симптом «неподвижной шеи», при котором невозможно повернуть голову.

Рассказывая о триггерных точках трапециевидной мышцы нужно обратить особое внимание на очень коварную точку, находящуюся внизу, между позвоночником и лопаткой. Коварство её заключается в том, что она способна вызывать повторное формирование триггерных точек наверху — в трапециевидной мышце шеи. На этой проблеме часто «спотыкаются» неопытные врачи. Устранив все триггеры в шее и верхней части спины, такой врач никак не может понять, почему боль не проходит. А причина, чаще всего, именно в этой точке.


Также для синдрома трапециевидной мышцы характерны боли в области надплечий и верхушки плечевого сустава. И тогда, всё, что давит на плечи, причиняет особую боль и неудобства. Это и бретельки бюстгальтера, и тяжелая верхняя одежда, и сумка через плечо и т.д. Также нужно отметить, что в этой области расположена точка, вызывающая неприятные ощущения по типу «гусиной кожи». Ещё одним симптомом трапециевидной мышцы является жгучая боль в межлопаточной области или вдоль позвоночного края лопатки.

Вообще, нужно сказать, что многие люди искренне не понимают, почему у них болит трапециевидная мышца. Ведь, по их мнению, для этого нет никаких причин. Чтобы разъяснить этот вопрос, нужно сказать, что боль в трапециевидной мышце часто является следствием наших привычек. Ведь то, что мы считаем обычной привычкой, на поверку оказывается хронической микротравмой. Например, при синдроме трапециевидной мышцы симптомы могут появиться из-за привычки удерживать телефон ухом или спать на животе, повернув голову в одну и ту же сторону. Привычно располагая руки на вершине руля или сопровождая свою речь активной жестикуляцией, мы тоже вызываем перегрузку мышцы. Такая же незаметная перегрузка формирует симптомы трапециевидной мышцы из-за привычки постоянно откидывать волосы со лба резким движением головы. А подпирая руками подбородок, мы перегружаем трапециевидную мышцу спины. В общем, капля за каплей — вода камень точит. Так и хроническая микротравма — коварна своей незаметностью. Кстати, для этого и существует профилактика — чтобы вовремя устранять накопившиеся перегрузки.

Касаясь вопросов статистики, нужно отметить, что слева трапециевидная мышца болит чаще, чем справа. Хотя, если следовать логике – должно быть наоборот. Ведь у большинства людей рабочая рука правая. Следовательно, и болеть должно чаще справа. Однако факт остаётся фактом. Скорее всего, всё дело в компенсаторной перегрузке, которая возникает в противовес работающей конечности. Так часто бывает – компенсирующий участок перегружается сильнее основного. Что касается медицины, тут нет никакой разницы — болит трапециевидная мышца справа или слева – методы лечения одни и те же.

Лечение трапециевидной мышцы

Лечение трапециевидной мышцы можно разделить на основное и вспомогательное. Основным – является мягкая мануальная терапия. Она кардинально отличается от обычной мануальной не только своей мягкостью и безопасностью, но и более высокой эффективностью. И это неудивительно, ведь мягкая мануальная терапия на 90% состоит из мышечных и фасциальных техник. Даже при лечении грыжи диска и других заболеваний позвоночника, мягкая мануальная терапия действует не как обычная – резко и с хрустом вправляя позвонки, а, через, так называемый, мягкий мышечный «рычаг», который полностью исключает любую опасность.

Вспомогательным лечением трапециевидной мышцы служат физиопроцедуры, массаж и лекарственная терапия, которая, по нашему мнению, уместна лишь в крайних случаях острой боли. И, в завершение темы, несколько слов о профилактике.

Выполняйте один раз в 3-6 месяцев по одному профилактическому сеансу мягкой мануальной терапии, и вы забудете, как болит трапециевидная мышца.

симптомы и лечение, диагностика и профилактика

Описание патологии. Патогенез

Синдром лестничных мышц обусловлен анатомией этого места. Узнав детали, вы сразу поймёте — кто виноват и что делать?


Лестничные мышцы расположены вертикально вдоль позвоночника. Своими верхними концами они прикрепляются к боковым сторонам позвонков, а нижними – к двум верхним рёбрам, которые находятся в самой верхней части грудной клетки в глубине за ключицей. Именно здесь — сверху и сзади ключицы, на границе шеи и грудной клетки, развивается синдром передней лестничной мышцы. Своим названием лестничные мышцы обязаны своеобразному расположению — уступами. Если бы человек лежал на спине, то мышцы выглядели бы, как ступени. Нижняя ступень – это задняя лестничная мышца, вторая – средняя, а самая верхняя ступень – передняя лестничная мышца. Именно так древнеримские анатомы увидели эти мышцы и дали им соответствующее название.

Между передней и средней лестничными мышцами расположены подключичная артерия и нервы, которые идут из позвоночника в руку. И, хотя, тут довольно узко, как в туннели, но, если мышцы здоровы, то нервам и артерии ничего не угрожает. Во-первых, потому что здоровые мышцы эластичные и мягкие, а во-вторых — и сами мышцы, и нервы с артерией покрыты плотной скользкой оболочкой — фасцией. Это обеспечивает им беспрепятственное скольжение относительно друг друга и предохраняет от любых зажимов при движениях головы и шеи. Однако при патологии всё меняется – передняя лестничная мышца спазмируется и тонус её резко возрастает. Это вызывает боль и, кроме того, натянутая, как струна, мышца может зажать нервы и артерию в узком туннели, о котором мы говорили выше.

Таким образом, при синдроме передней лестничной мышцы пациент ощутит на себе один из двух возможных вариантов развития этой патологии. Первый – относительно лёгкий. При нём возникает мышечно-тонический (миофасциальный) синдром. В мышце появляются триггерные точки, запускающие отражённую боль в зоне шеи, плеча, груди, лопатки и руки. Второй – более тяжёлый. Тут спазмированная мышца зажимает нерв или сосуд. В этом случае, кроме боли, возникает ещё и нервно-сосудистая патология или, как принято говорить в медицине – нейро-васкулярная. Кстати, синдром передней лестничной мышцы – это самая распространённая нейроваскулярная патология шеи. Его также называют скаленус-синдром или синдром Наффцигера.

Для справки: scalenus – лестничная (лат). Говард Кристиан Наффцигер американский нейрохирург, одним из первых описавший нейроваскулярную патологию, вызванную передней лестничной мышцей.

Симптомы синдрома

Как было сказано выше – симптомы синдрома передней лестничной мышцы могут быть либо чисто болевыми, из-за спазма мышцы, либо – к боли присоединяются ещё и нейроваскулярные нарушения, из-за зажима нервов и подключичной артерии.

Боль – это первый и самый изнуряющий симптом; она распространяется от плечевого сустава вниз по руке и может доходить до мизинца и безымянного пальца. Иногда боль переходит на грудную клетку или затылок. Усиление боли часто происходит ночью. Также боль усиливается при повороте головы, при отведении руки в сторону и при глубоком вдохе. Лестничные мышцы являются вспомогательными мышцами вдоха. При глубоком вдохе они сокращаются и тянут за собой верхние рёбра и грудную клетку вверх. Благодаря этому грудь вздымается и в лёгкие попадает больше воздуха. Вот почему синдром передней лестничной мышцы часто развивается, из-за её длительной перегрузки, у людей страдающих одышкой или какими-то заболеваниями дыхательной системы, например — простудными. Кстати, не только одышка или простуда могут вызвать перенапряжение мышцы. Существует, так называемый, гипервентиляционный синдром, когда на фоне психосоматических, тревожных или психовегетативных расстройств нарушается диафрагмальное дыхание. В этих случаях вспомогательные дыхательные мышцы, в первую очередь – лестничные, вынуждены полностью брать на себя выполнение дыхательных движений. Это является для них непомерной нагрузкой, причиной перенапряжения и отправной точкой развития синдрома передней лестничной мышцы.

Вторая группа симптомов синдрома передней лестничной мышцы проявляется ощущениями напряжения шейных мышц, тяжести, онемения и слабости в руке, вплоть до грубых парезов (неполных параличей) кисти и атрофии мышц. Правда, нужно отметить, что парезы и атрофия кисти встречаются крайне редко — только в очень запущенных случаях.

Третья группа – сосудистые симптомы синдрома передней лестничной мышцы: отечность руки, её синюшность, похолодание, ослабление пульса, вплоть до полного его исчезновения при подъеме руки вверх или наклоне и повороте головы. Кроме подключичной артерии, нередко страдают и лимфатические сосуды. Их зажим нарушает циркуляцию лимфы. Это приводит к застою и отёку, который проявляется припухлостью в надключичной ямке (псевдоопухоль Ковтуновича).

И четвёртая группа – вегетативно-трофические симптомы синдрома передней лестничной мышцы проявляются ломкостью ногтей и уменьшением волосяного покрова на руке. Однако проявление вегетативных симптомов, тоже, отмечается только на фоне длительных и далеко зашедших случаев, что, к счастью, случается нечасто. Современный человек, тем более живущий в крупном городе, крайне редко станет дотягивать обращение к врачу до такой стадии.

Что произойдет, если «запустить» синдром лестничной мышцы

Самое опасное осложнение синдрома передней лестничной мышцы – тромбоз в системе подключичной артерии. Для лучшего понимания нужно сказать, что от левой и правой подключичной артерии отходят позвоночные артерии, от которых, в свою очередь, начинаются артерии головного мозга. Тромбоз в этой системе является по-настоящему смертельно опасным осложнением синдрома передней лестничной мышцы и требует немедленного хирургического вмешательства.

Вторым серьёзным осложнением — является парез (неполный паралич) и атрофия мышц кисти.

Ещё одним ярким и неприятным осложнением является нарушение биомеханики шеи и тела в целом. Этот момент немного сложен для понимания неспециалиста, но сейчас мы разберёмся и в нём. Итак. При длительном напряжении лестничных мышц происходит их укорочение. Это усиливает шейный лордоз и смещает голову вперед. Чтобы компенсировать равновесие и центр тяжести, мышцы задней части шеи вынуждены напрягаться и, соответственно, перегружаться. В скором времени, из-за перегрузки, в задних мышцах шеи будут формироваться вторичные болевые триггерные точки, и развиваться миофасциальный синдром. Далее, при отсутствии лечения, усиление шейного лордоза приведёт к компенсаторному искривлению позвоночника в грудном и поясничном отделах, ведь он вынужден искать равновесие. Искривление позвоночника нарушает распределение осевых нагрузок на межпозвонковые диски и, таким образом, открывает дорогу к формированию протрузий и грыж дисков не только в шее, но и в любом другом компенсаторно перегруженном месте позвоночника.

Миофасциальный синдром лестничной мышцы


Вот почему своевременное обращение к врачу, раннее выявление и правильное лечение позволяют избежать всех этих серьёзных осложнений синдрома передней лестничной мышцы.

Диагностика

Диагностика синдрома передней лестничной мышцы основывается на типичной клинической картине и всегда начинается с осмотра. Во время такого осмотра у большинства пациентов выявляется припухлость надключичной области. Это, так называемый, псевдотумор (псевдоопухоль) Ковтуновича. Он возникает из-за сдавливания передней лестничной мышцей лимфатических сосудов. Также во время осмотра обращаем внимание на кисть – она может быть отечна и немного синюшна. В запущенных случаях будут отмечаться более выраженные изменения, вплоть до трофических.

При пальпации передней лестничной мышцы, она будет резко напряжена и болезненна, к тому же это вызовет усиление боли в шее с возможным распространением в руку.

Неврологический осмотр – проверка чувствительности, рефлексов и т.д. — выявляет чувствительные, двигательные и вегетативные нарушения.

Проба на спазм. Её проводят для выявления миофасциального синдрома лестничных мышц. Нужно максимально повернуть голову в больную сторону и сильно прижать подбородок к ключице. Лестничные мышцы сократятся и триггерные точки в них активируются. В результате пациент почувствует усиление боли.

Проба Адсона: если на стороне синдрома передней лестничной мышцы поднять руку и сюда же наклонить голову, то там, где обычно проверяют пульс на запястье — пульса не будет.

Допплерография (УЗДГ) сосудов шеи также обладает определённой диагностической ценностью, особенно, принимая во внимание то, что от подключичной — отходит позвоночная артерия, питающая заднюю часть головного мозга. И вся эта сосудистая сеть может пострадать от сдавливания подключичной артерии, что в свою очередь, грозит нарушением мозгового кровообращения или тромбозом.

Электронейромиография (ЭНМГ) считается общепризнанным методом диагностики. Хотя, на начальных стадиях патологии её информативность недостаточно высока, а порой даже чревата ошибочными выводами.

Поэтому самым лучшим видом исследования на всех этапах синдрома передней лестничной мышцы является старое доброе мануальное мышечное тестирование.

Запишитесь на диагностику лестничных мышц

  • Пройдите комплексную диагностику лестничных мышц. Проведём пальпацию, неврологический осмотр, пробу на спазм, пробу Адсона и мануальное мышечное тестирование: протестируем мышцы на наличие активных и латентных триггерных точек.
  • Продолжительность диагностики — 30 минут. Это полноценное обследование, а не 2-х минутные «ощупывания» для галочки.
  • Диагностику проводит лично доктор Власенко А.А., врач с 30-летним опытом, эксперт в области лечения миофасциального и корешкового синдромов.

Лечение синдрома лестничной мышцы

Эффективное лечение синдрома лестничной мышцы предусматривает чёткое понимание причины и механизма болезни, а также — комплексный подход к лечению.

Для лечения синдрома передней лестничной мышцы используются: медикаментозное лечение, физиотерапия, ЛФК, массаж, оперативные методы и мануальная терапия. Начинать, разумеется, следует с консервативных методов, среди которых ключевое место занимает мануальная терапия. Но, обо всём по порядку.

Мануальная терапия

Не стоит думать, что мануальная терапия синдрома лестничных мышц – это вправление позвонков или что-то в этом роде. Если вы так считали – вы глубоко заблуждались. Современная мягкая мануальная терапия – это комплекс методов направленных на устранение боли, нормализацию мышечного тонуса и восстановление полного объёма движений поражённого региона и всей опорно-двигательной системы в целом.

Все методы мануальной терапии синдрома лестничных мышц можно разделить на прямые и непрямые; активные и пассивные; мягкие и трастовые. Но, так или иначе, основную часть составляют, так называемые, нейромышечные методы, при выполнении которых воздействие происходит через мягкие ткани: мышцы, фасции и др.

При мануальной терапии синдрома лестничных мышц используют, в основном, именно нейромышечные методы. Они включают: постизометрическую релаксацию, реципрокное торможение, изотонические концентрические и эксцентрические сокращения, техники позиционного расслабления, стрейн-контрстрейн, миофасциальный релиз и др. А также прямые мануальные методы: ишемическую компрессию, давление на триггерные точки, акупрессуру, поперечное трение, мягкотканную мобилизацию, глубокий тканевой массаж и др.

Правильное и адекватное применение всех этих многочисленных мягких методов даёт потрясающий лечебный эффект при мануальной терапии синдрома лестничных мышц.

Преимущества лечения в клинике «Спина Здорова»

  • Гарантия полноценного и квалифицированного лечения. Слово «полноценное» является ключевым в нашей работе.
  • Высокая квалификация и большой практический опыт — 30 лет.
  • Каждый случай мы рассматриваем индивидуально и всесторонне — никакого формализма.
  • Эффект синергии.
  • Гарантия честного отношения и честной цены.
  • Расположение в двух шагах от метро в самом центре Москвы.

Иные методы лечения. Физиотерапия

Физиотерапия синдрома лестничной мышцы – это вспомогательный вид лечения. Чаще всего выбирают следующие процедуры:

Синусоидальные модулированные токи (СМТ) или – второе название – амплипульстерапия. Данная процедура отлично справляется с болью и спазмом мышц, одновременно восстанавливая их кровоснабжение и питание.

Электрофорез – классика физиотерапии. Менее мощный, но более мягкий способ лечения. Подойдёт там, где имеются противопоказания для СМТ-терапии.

Ультразвук (УЗТ) – является, по сути, микромассажем. Распространяясь вглубь ткани, ультразвук передаёт свои колебания этим тканям, улучшая тем самым их дренажные и трофические функции. Исчезают глубокие отёки, застой и воспаление, нормализуется кровообращение и питание ткани. За счёт этого снижается болевой синдром.

Магнитотерапия – увеличивает микроциркуляцию, благодаря чему происходит устранение застоя, отёков, воспаления и снижение болевого синдрома.

Оперативное лечение

Оперативное лечение синдрома лестничной мышцы применяют только в далеко зашедших случаях нейроваскулярной стадии синдрома, когда сдавливание нервов и подключичной артерии не удалось устранить иными способами. Как мы уже говорили выше — консервативное лечение не всегда способно решить проблему, и тогда единственным выходом становится операция.

В ходе оперативного лечения синдрома лестничной мышцы производят рассечение самой мышцы и соседних тканей, сдавливающих нерв и артерию. Для предупреждения рецидивов резекцию мышцы осуществляют на возможно большем участке.

Ещё раз обращаем внимание – вопрос об оперативном лечение синдрома лестничной мышцы целесообразно рассматривать только тогда, когда полностью исчерпаны все консервативные методы лечения.

Не запускайте свою болезнь! Своевременное обращение к врачу позволяет избежать операции!

Профилактика

Профилактика синдрома лестничной мышцы направлена на предотвращение обстоятельств, приводящих к возникновению синдрома. Какие же это обстоятельства?

Во-первых, синдром лестничной мышцы очень часто возникает, как одно из звеньев патологии межпозвонковых дисков шейного отдела позвоночника. Следовательно, своевременное обращение к врачу и устранение любой патологии позвоночника и дисков на ранних этапах, служит важнейшим профилактическим действием.

Во-вторых – поскольку главным провоцирующим фактором развития синдрома служит длительное вынужденное положение головы и рук, что обычно бывает при сидячей работе, значит, необходимо делать регулярные перерывы. Имейте в виду, оптимальное время непрерывной работы – 45 минут, как школьный урок (плюс-минус 15 минут). Иными словами, старайтесь менять положение тела – неважно, как именно — вставать, разминаться, прохаживаться — главное делать краткосрочную смену положения. В общем, подойдите к этому вопросу творчески и действуйте по обстоятельствам.

В-третьих, очень часто синдром лестничной мышцы возникает на фоне спортивной перетренированности, поэтому людям, которые активно занимаются спортом необходимо об этом знать и быть внимательными к сигналам своего тела.

Вообще, это пожелание не только для любителей активной жизни, а для всех — не игнорируйте «язык тела», ведь многие проблемы возникают из-за пренебрежения к этим сигналам. Как показывает практика, почти все пациенты, которые обращаются к врачу с синдромом лестничной мышцы, описывают начало болезни одинаково: «Всё началось давно и поначалу сильно не беспокоило». Это классическое начало – постепенное и не очень болезненное. Именно так организм посылает нам сигналы, давая возможность всё быстро исправить. А мы заедаем сигналы анальгинами, думая, что «всё само рассосётся». Увы, это не так. С определённого момента болезнь понесётся, как стремительная лавина, и её будет очень трудно останавливать и устранять последствия. Поэтому, ещё раз обращаем ваше внимание — не пренебрегайте «сигналами тела», не запускайте себя и не доводите ситуацию до кризиса.


Мышечные зажимы: как осознать проблему и расслабиться

За работу мышц отвечает наша нервная система. Она подает сигналы в нужные участки головного и спинного мозга, и, пройдя сложный путь, химическая энергия превращается в механическую. С точки зрения анатомии зажатая мышца — это укороченная очень плотная и жесткая мышца в локальной области (мышцы лица, грудной клетки, живота).

«

Спазмированная мышца — это слабая мышца. Из-за постоянного напряжения в пораженной области нарушается кровоснабжение, человек испытывает хронические боли, возможны головокружения. По этой причине он может быть постоянно утомлен и раздражен, что значительно снижает качество жизни».

Елена Мосолова

руководитель Центра красоты и здоровья семейного курорта Alean Family Resort & Spa Riviera 4* (г. Анапа).

Отголоски детства

Первые мышечные зажимы рождаются в детской кроватке, когда мы получаем сигналы от внешнего мира, которые сдерживают нашу внутреннюю энергию и блокируют ее в разных участках тела. Банальные запреты на веселье, желания, детские порывы — остаются в нашем теле. И во взрослом возрасте мы часто блокируем эту энергию, так как привыкли к тому, что быть собой и делать то, что хочется, — нельзя. Тяжелые травмы и нарушение физических границ тело запоминает на всю жизнь, и здесь нужен постоянный труд над собой: работа с установками, расслабление тела с помощью дыхательных практик, визуализации и умение отстаивать границы.

«

Когда мы не можем ответить, дать сдачи, постоять за себя, в нашем теле скапливается энергия — тело готово дать отпор, но внутренне мы не можем этого сделать. И поэтому сконцентрированная порция энергии остается в любом участке тела (живот, сердце, горло, спина и др.). Этот блок остается в теле надолго, если мы говорим о каких-то тяжелых психологических травмах,  Взрослея, человек может работать и самостоятельно над принятием своих эмоций, разрешением и позволением себе быть собой, ощущать весь спектр чувств. Здесь речь идет как о позитивных эмоциях, так и негативных».

Инга Меликова

психолог, арт-терапевт

Внешние факторы — стресс, переохлаждение, растяжения

Помимо детства на мышцы влияет и наш образ жизни. Это может быть неподвижная сидячая работа без перерывов на физическую разгрузку (прогулка, легкая разминка), спортивные занятия, где используются силовые тренировки, переохлаждения, подъем большого веса, особенно если мышечный корсет не подготовлен для подобных нагрузок.

Важно дополнять сидячий образ жизни физической активностью: пусть это будет прогулка после рабочего дня или йога, бассейн, небольшая пробежка. Важно, чтобы активность была в удовольствие и не перегружала мышцы.

«

Мышечные зажимы — это излишнее напряжение мышц локального характера. То есть напрягаются отдельные группы мышц и остаются в этом состоянии, независимо от того, выполняют они какую-то работу или нет. Одна из причин — это проблемы, связанные с нервной регуляцией этих мышечных зон, чаще всего это возникает в результате проблем с позвоночником либо при неврологических заболеваниях. Еще одна причина носит травматических характер — либо перенапряжение, либо травма. Если причиной является нездоровое состояние позвоночника, необходимо обратиться к специалисту. Это может быть остеопат, мануальный терапевт, на крайний случай массажист. При травме и перенапряжении совет простой — больше отдыхать».

Сергей Великий

врач, мануальный терапевт, анестезиолог и реаниматолог клиники Gen87

«

Если мышечные зажимы связаны со спортом, то советую использовать миофасциальный релиз. Принцип очень прост — вам нужно воздействовать специальным оборудованием (ролом или мячиком) на фасциальные линии. Это аналогия массажа, который вы можете сделать себе сами, также иногда встречаются триггерные зоны, в которых максимально собран мышечный зажим. Они обычно прощупываются пальцами в виде шариков и сопровождаются острой болью. Если вы эту область прощупали — лучше обратиться к специалисту. Самостоятельно лечить такие зажимы я не рекомендую, чтобы себе не навредить».

Наталья Кубышева

тренер-эксперт, нутрициолог клуба единоборств и фитнеса Ludus Dome.

Рефлексы тела и психосоматика

Незаметно для головы тело накапливает любое напряжение, которое подсознание автоматически фиксирует под ярлыком «опасно». Недоброжелательные взгляды со стороны, пробки, горящие дедлайны, опоздания, бесконечные обязанности — напряжение накапливается телом в виде зажатых участков.

Мы можем осознанно направлять внимание в напряженные места и расслаблять их. Задайте себе вопросы: зачем я напрягаю живот, поднимаю плечи, почему зажато горло, а мышцы на лице напряжены. Когда сознание понимает, что напрягать мышцы не нужно (опасности нет), мышцы расслабляются и нервная система также успокаивается.

«

Многие не могут расслабиться даже ночью во время сна. В таких ситуациях я рекомендую добавить спорт (любую физическую активность) и дыхательную гимнастику. Такая практика снимает стресс, и это чуть ли не единственно действующий способ самостоятельной борьбы с мышечными зажимами. Дыхательная гимнастика расслабляет, объединяет тело и разум, приводит в порядок физическое и физиологическое состояние», — советует Наталья Кубышева.

Способы расслабления

Для работы с зажатыми мышцами важно дать себе разрешение расслабиться. Зачастую мы не даем себе ни минуты покоя. Важно найти именно тот способ, который вас будет расслаблять и радовать, дарить внутренний покой. Это можеть быть посещение бани или хаммама в сочетании с курсом массажа или класс йоги критического выравания, самомассаж, медитация, контрастный душ. Позволяйте себе удовольствия, даже самые маленькие, это дарит ощущение счастья, умиротворения и безопасности.

«

Что касается последовательности, то баню или сауну рекомендуется посещать после тренировки и до массажа. Под влиянием тепла мышцы расслабляются, улучшается кровоснабжение, процесс восстановления поврежденных тканей ускоряется. Физиотерапию и массаж — в разные дни. Главная цель массажа — расслабить мышцу, нормализовать кровообращение и лимфоток. Из физиотерапии советую электрофорез и амплипульстерапию. Первая методика посредством электрических импульсов помогает доставлять лекарственные средства непосредственно в мышцу, способствуя ее расслаблению. А при амплипульстерапии на мышечные и нервные волокна воздействуют амплитудные пульсации модульных токов, снимая болевой синдром, активируя обменные процессы в тканях, — рекондует Елена Мосолова. — Старайтесь раз в год выезжать на отдых в курортные регионы, обладающие природными лечебными факторами, где можно не только максимально расслабиться, но и перезагрузиться, избавившись от психологических проблем».

Структура мышц — мышцы под микроскопом — Science Learning Hub

Все ли мышцы выглядят одинаково? Если вы посмотрите на скелетные, гладкие и сердечные мышцы под микроскопом, вы увидите различия в их структуре.

Скелетная мышца

Скелетная мышца выглядит полосатой или «полосатой» — волокна содержат чередующиеся светлые и темные полосы (полосы), похожие на горизонтальные полосы на рубашке для регби. В скелетных мышцах волокна собраны в правильные параллельные пучки.

Сердечная мышца

Сердечная мышечная ткань, как и ткань скелетных мышц, выглядит полосатой или полосатой. Пучки разветвленные, как у дерева, но соединенные с обоих концов. В отличие от ткани скелетных мышц, сокращение ткани сердечной мышцы обычно не контролируется сознанием, поэтому оно называется непроизвольным.

Гладкая мышца

По сравнению со скелетной мышцей гладкомышечные клетки меньше. Они имеют веретеновидную форму и не имеют бороздок. Вместо этого у них есть пучки тонких и толстых нитей.

Присмотритесь к скелетным мышцам

Не все волокна скелетных мышц одинаковы. Они различаются по структуре и функциям, например, по скорости сжатия.

Волокна скелетных мышц сокращаются с разной скоростью в зависимости от:

  • их способности расщеплять АТФ (высвобождающее энергию химическое вещество)
  • способа, которым они производят АТФ
  • насколько быстро они устают

Итак, скелетные мышцы подразделяются на два широких типа — быстрые сокращения и медленные сокращения.

Медленное сокращение (также называемое Типом I):

  • имеет много крошечных кровеносных сосудов, называемых капиллярами (и поэтому выглядит красным)
  • имеет много митохондрий (участков производства энергии)
  • имеет много миоглобина (транспортирующий кислород и запасной белок в мышцах)
  • переносит больше кислорода
  • легко не устает (может выдерживать аэробную активность)
  • может сокращаться медленно
  • в большом количестве обнаруживается в постуральных мышцах шеи

Природа науки

Вы замечали, что когда вы смотрите на что-то под микроскопом, это может сбивать с толку, но если вы посмотрите на контрольную диаграмму или картинку, вы сможете увидеть под микроскопом гораздо больше деталей? Когда ученые наблюдают, у них уже есть некоторое понимание того, на что они смотрят.На их наблюдения влияют их опыт, знания и понимание существующих теорий.

Быстрое сокращение (также называется Тип II):

Тип IIa

  • аэробный, как медленные мышцы
  • богат капиллярами
  • выглядит красным

Тип IIx

  • имеет меньшее количество митохондрий и меньше миоглобина
  • может сокращаться быстрее, чем тип IIa
  • может сокращаться с большей силой, чем аэробная мышца
  • может выдерживать только короткие анаэробные всплески активности, прежде чем сокращение мышц
  • станет болезненным (например.грамм. шов)
  • — самый быстрый тип мышц у человека

Тип IIb

  • — анаэробная белая мышца
  • еще менее плотна в митохондриях, а миоглобин
  • может сокращаться еще быстрее
  • — это мышца основной быстрый тип мышц у мелких животных, таких как грызуны или кролики (что объясняет, почему их мясо такое бледное)

Заглянуть внутрь мышечной клетки

Скелетные мышцы состоят из сотен тысяч мышечных клеток (также называемых мышечными волокнами).Эти мышечные клетки действуют вместе, чтобы выполнять функции конкретной мышцы, частью которой они являются.

В отличие от других тканей, клетки скелетных мышц содержат миофибриллы — они имеют форму длинных цилиндров и проходят по всей длине мышечного волокна / клетки.

Каждая миофибрилла состоит из двух типов белковых нитей, называемых толстыми и тонкими нитями. Толстые филаменты и тонкие филаменты в миофибриллах и перекрываются, а участки, где они перекрываются и встречаются вместе, называются саркомерами.Когда происходит сокращение мышц, тонкие нити и толстые нити скользят друг мимо друга.

Природа науки

Ученые проводят наблюдения — и развивают свои объяснения, используя умозаключения, воображение и творчество. Часто они используют «модели», чтобы помочь другим ученым понять их теории. Диаграмма — это пример пояснительной модели. Эти диаграммы демонстрируют творческий подход, необходимый ученым для использования своих наблюдений для разработки моделей и передачи своих объяснений другим.

Как это выглядит внутри наших мышц

Несколько недель назад вы узнали, какие существуют типы мышц. Для вас, как для свободных спортсменов, наиболее актуальны так называемые поперечно-полосатые или скелетные мышцы. Чтобы понять, как работает эта мышца, важно знать некоторые основы ее внутренней структуры.

Глубокий взгляд изнутри

Вы можете представить себе мышцу как прочный провод, состоящий из проводов — так называемых мышечных пучков. Эти мышечные пучки состоят из параллельных мышечных волокон, которые также известны как мышечные клетки.

Эти клетки, в свою очередь, содержат множество цепочек миофибрилл. По длине миофибриллы есть участки, называемые саркомерами, которые описывают систему актиновых и миозиновых нитей. Это длинные белки, которые скользят друг в друга, вызывая напряжение и расслабление мышцы, то есть движение. Например, при концентрическом сокращении миофибриллы укорачиваются, потому что миозиновая нить тянет вверх актиновую нить.

Саркомеры составляют большую часть нашей мышечной массы.Остальное состоит в основном из кровеносных сосудов, соединительной ткани, цитоплазмы и нервов.

Как возникает движение?

Миофибриллы контролируются нервной системой, которая заставляет мышечные волокна сокращаться или расслабляться. Мозг посылает сигналы мышечным клеткам с помощью минеральных ионов, также называемых электролитами. Эта химическая энергия трансформируется в кинетическую энергию внутри клеток: мышцы сокращаются. Сухожилия, соединяющие мышцу с костью, передают создаваемую мышечную силу, которая приводит к движению скелета.

В среде ионов кальция головки миозиновой нити активируются, чтобы связываться с участками актиновой нити, и мышцы сокращаются. Как только концентрация кальция в мышечной клетке падает, головы «наклоняются» обратно в исходное положение и отпускают актиновую нить — мышца расслабляется.

Чтобы снизить концентрацию кальция, необходим магний. Однако он не становится активным непосредственно внутри клетки, но предотвращает дальнейшую нагрузку и облегчает выгрузку кальция.

У мускулов тоже есть слабые места!

Несмотря на то, что система очень сложна, она несовершенна и имеет некоторые недостатки: в случае недопонимания, что означает, что нервы посылают слишком много, слишком сильных или просто неправильных сигналов, или мышечные клетки не могут должным образом обрабатывать полученные потенциалы действия, могут возникать спазмы. Это неконтролируемые сокращения пораженной мышцы.

Один хорошо известный вид спазма — мышечные судороги.

Мышечная сила возникает в результате процессов в микроскопе, но может иметь огромное влияние.Десятки тысяч мышечных и нервных клеток идеально взаимодействуют, чтобы управлять даже малейшими движениями. В соответствии с девизом «сила цепи — ее самое слабое звено», мышца может работать эффективно только в том случае, если все ее клетки работают должным образом. Хорошая новость: мышцы способны учиться! А лучший способ укрепить систему и научить мышцы — это постоянные тренировки в виде интенсивных движений!

Кстати

Миофибриллы — причина того, что так называется поперечно-полосатая мышца.Фибриллы расположены по кругу и равномерно, при этом более темные и более светлые элементы — актин и миозин — чередуются. Это позволяет мышечным клеткам казаться полосатыми под микроскопом.

Если вы хотите узнать больше по этой теме, нажмите здесь и здесь.

Типы мышечной ткани | Изучите мышечную анатомию

Примерно половину веса вашего тела составляют мышцы. В мышечной системе мышечная ткань подразделяется на три различных типа: скелетную, сердечную и гладкую.Каждый тип мышечной ткани в организме человека имеет уникальную структуру и определенную роль. Скелетная мышца перемещает кости и другие структуры. Сердечная мышца сокращает сердце, чтобы перекачивать кровь. Гладкая мышечная ткань, образующая такие органы, как желудок и мочевой пузырь, меняет форму, чтобы облегчить функции организма. Вот более подробная информация о структуре и функциях каждого типа мышечной ткани в мышечной системе человека.

1. Человеческое тело имеет более 600 скелетных мышц, которые двигают кости и другие структуры

Скелетные мышцы прикрепляются к костям и перемещают их, сокращаясь и расслабляясь в ответ на произвольные сообщения нервной системы.Ткань скелетных мышц состоит из длинных клеток, называемых мышечными волокнами, которые имеют поперечно-полосатый вид. Мышечные волокна организованы в пучки, снабжаемые кровеносными сосудами и иннервируемые мотонейронами.

2. Стены многих человеческих органов сжимаются и автоматически расслабляются

Гладкая мускулатура находится в стенках полых органов по всему телу. Сокращения гладких мышц — это непроизвольные движения, вызванные импульсами, которые проходят через вегетативную нервную систему к гладкой мышечной ткани.Расположение клеток в гладкой мышечной ткани позволяет сокращаться и расслабляться с большой эластичностью. Гладкие мышцы стенок таких органов, как мочевой пузырь и матка, позволяют этим органам расширяться и расслабляться по мере необходимости. Гладкая мышца пищеварительного тракта (пищеварительного тракта) способствует перистальтическим волнам, которые перемещают проглоченную пищу и питательные вещества. В глазу гладкие мышцы изменяют форму линзы, чтобы сфокусировать объекты. Стенки артерий включают гладкие мышцы, которые расслабляются и сокращаются для перемещения крови по телу

3.Сокращения сердечной мышцы в ответ на сигналы от системы сердечной проводимости

Стенка сердца состоит из трех слоев. Средний слой, миокард, отвечает за работу сердца. Сердечная мышца, находящаяся только в миокарде, сокращается в ответ на сигналы сердечной проводящей системы, заставляющие сердце биться. Сердечная мышца состоит из клеток, называемых кардиоцитами. Кардиоциты, как и клетки скелетных мышц, имеют полосатый вид, но их общая структура короче и толще.Кардиоциты разветвлены, что позволяет им соединяться с несколькими другими кардиоцитами, образуя сеть, которая способствует скоординированному сокращению.

Типы мышечной ткани и волокон

Результаты обучения

  • Классифицируйте различные типы мышечной ткани и волокон

Мышечные клетки специализируются на сокращении. Мышцы позволяют совершать движения, такие как ходьба, а также облегчают процессы в организме, такие как дыхание и пищеварение.Тело состоит из трех типов мышечной ткани: скелетных мышц, сердечных мышц и гладких мышц (рис. 1).

Рис. 1. Тело состоит из трех типов мышечной ткани: скелетных мышц, гладких мышц и сердечных мышц, визуализированных здесь с помощью светового микроскопа. Гладкомышечные клетки короткие, суженные на каждом конце и имеют только одно пухлое ядро ​​на каждом. Клетки сердечной мышцы разветвленные и поперечно-полосатые, но короткие. Цитоплазма может ветвиться, и у них есть одно ядро ​​в центре клетки.(кредит: модификация работы NCI, NIH; данные шкалы от Мэтта Рассела)

Ткань скелетных мышц образует скелетные мышцы, которые прикрепляются к костям или коже и контролируют передвижение и любое движение, которое можно контролировать сознательно. Скелетную мышцу также называют произвольной мышцей, поскольку ею можно управлять с помощью мысли. Скелетные мышцы длинные и цилиндрические на вид; при рассмотрении под микроскопом ткань скелетных мышц имеет полосатый или полосатый вид. Строчки вызваны регулярным расположением сократительных белков (актина и миозина). Актин представляет собой глобулярный сократительный белок, который взаимодействует с миозином для сокращения мышц. Скелетная мышца также имеет несколько ядер, присутствующих в одной клетке.

Гладкая мышечная ткань встречается в стенках полых органов, таких как кишечник, желудок и мочевой пузырь, а также вокруг проходов, таких как дыхательные пути и кровеносные сосуды. Гладкая мышца не имеет бороздок, не находится под произвольным контролем, имеет только одно ядро ​​на клетку, сужается с обоих концов и называется непроизвольной мышцей.

Ткань сердечной мышцы находится только в сердце, и сердечные сокращения перекачивают кровь по всему телу и поддерживают кровяное давление. Как и скелетная мышца, сердечная мышца имеет поперечно-полосатую форму, но в отличие от скелетных мышц, сердечная мышца не может контролироваться сознательно и называется непроизвольной мышцей. Он имеет одно ядро ​​на клетку, разветвлен и отличается наличием вставочных дисков.

Структура волокон скелетных мышц

Каждое волокно скелетных мышц представляет собой клетку скелетных мышц.Эти клетки невероятно большие, диаметром до 100 мкм и длиной до 30 см. Плазматическая мембрана волокна скелетных мышц называется сарколеммой . Сарколемма — это место проведения потенциала действия, которое вызывает сокращение мышц. Внутри каждого мышечного волокна находится миофибрилл, — длинные цилиндрические структуры, расположенные параллельно мышечному волокну. Миофибриллы проходят по всей длине мышечного волокна, и, поскольку их диаметр составляет всего около 1,2 мкм, внутри одного мышечного волокна можно найти от сотен до тысяч.Они прикрепляются к сарколемме своими концами, так что по мере укорачивания миофибрилл сокращается вся мышечная клетка (рис. 2).

Рис. 2. Клетка скелетных мышц окружена плазматической мембраной, называемой сарколеммой, с цитоплазмой, называемой саркоплазмой. Мышечное волокно состоит из множества фибрилл, собранных в упорядоченные единицы.

Поперечно-полосатый вид ткани скелетных мышц является результатом повторяющихся полос белков актина и миозина, которые присутствуют по длине миофибрилл.Темные полосы A и светлые полосы I повторяются вдоль миофибрилл, а выравнивание миофибрилл в клетке приводит к тому, что вся клетка выглядит полосатой или полосчатой.

Рис. 3. Саркомер — это область от одной Z-линии до следующей Z-линии. Многие саркомеры присутствуют в миофибриллах, что приводит к полосатости, характерной для скелетных мышц.

Каждая полоса I имеет плотную линию, проходящую вертикально через середину, называемую Z-диском или Z-линией. Z-диски обозначают границу единиц, называемых саркомерами , которые являются функциональными единицами скелетных мышц.Один саркомер — это пространство между двумя последовательными Z-дисками и содержит одну целую полосу А и две половины полосы I. Миофибриллы состоят из множества саркомеров, расположенных по ее длине, и когда саркомеры индивидуально сокращаются, миофибриллы и мышечные клетки укорачиваются (рис. 3).

Миофибриллы состоят из более мелких структур, называемых миофиламентами . Существует два основных типа волокон: толстые волокна и тонкие волокна; у каждого свой состав и расположение. Толстые нити встречаются только в полосе А миофибриллы. Тонкие нити прикрепляются к белку в Z-диске, называемому альфа-актинином, и проходят по всей длине I-полосы и частично в A-полосе. Область, в которой перекрываются толстые и тонкие волокна, имеет более плотный вид, так как между ними мало места. Тонкие волокна не заходят полностью в полосы А, оставляя центральную область полосы А, которая содержит только толстые волокна. Эта центральная область полосы A выглядит немного светлее, чем остальная часть полосы A, и называется зоной H.Середина зоны H имеет вертикальную линию, называемую линией M, на которой дополнительные белки удерживают вместе толстые филаменты. И Z-диск, и линия M удерживают миофиламенты на месте, чтобы поддерживать структурное расположение и наслоение миофибрилл. Миофибриллы связаны друг с другом промежуточными, или десминовыми, филаментами, которые прикрепляются к Z-диску.

Толстые и тонкие нити сами состоят из белков. Толстые нити состоят из белкового миозина. Хвост молекулы миозина соединяется с другими молекулами миозина, образуя центральную область толстой нити около линии M, тогда как головки выравниваются по обе стороны от толстой нити, где тонкие нити перекрываются.Основным компонентом тонких филаментов является белок актин. Два других компонента тонкой нити — тропомиозин и тропонин. Актин имеет сайты связывания для прикрепления миозина. Нити тропомиозина блокируют сайты связывания и предотвращают актин-миозиновые взаимодействия, когда мышцы находятся в состоянии покоя. Тропонин состоит из трех глобулярных субъединиц. Одна субъединица связывается с тропомиозином, одна субъединица связывается с актином, а одна субъединица связывает ионы Ca 2+ .

Посмотрите это видео, демонстрирующее организацию мышечных волокон.

Внесите свой вклад!

У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

Улучшить эту страницуПодробнее

4.4 Мышечная ткань — анатомия и физиология

Цели обучения

Опишите характеристики мышечной ткани и то, как они определяют функцию мышц.

К концу этого раздела вы сможете:

  • Определите три типа мышечной ткани
  • Сравните и сопоставьте функции каждого типа мышечной ткани

Мышечная ткань обладает свойствами, позволяющими двигаться.Мышечные клетки возбудимы; они реагируют на раздражитель. Они сокращаются, то есть могут укорачиваться и создавать тянущее усилие. При прикреплении между двумя подвижными объектами, такими как две кости, сокращение мышц заставляет кости двигаться. Некоторые движения мышц являются произвольными, что означает, что они находятся под сознательным контролем. Например, человек решает открыть книгу и прочитать главу по анатомии. Другие движения являются непроизвольными, что означает, что они не находятся под контролем сознания, например сужение зрачка при ярком свете.Мышечная ткань подразделяется на три типа в зависимости от структуры и функции: скелетная, сердечная и гладкая (таблица 4.2).

Таблица 4.2 Сравнение структуры и свойств типов мышечной ткани
Тип мышц Конструкционные элементы Функция Расположение
Скелетный Длинное цилиндрическое волокно, бороздчатое, с множеством периферийных ядер Произвольное движение, производит тепло, защищает органы Прикрепляется к костям и вокруг участков входа и выхода тела (напр.г., рот, анус)
Сердечный Короткое, разветвленное, исчерченное, одно центральное ядро ​​ Контракты на перекачку крови Сердце
Гладкая Короткое, веретеновидное, без явной исчерченности, по одному ядру в каждом волокне Непроизвольное движение, перемещение пищи, непроизвольный контроль дыхания, перемещение выделений, регулирование кровотока в артериях путем сокращения Стенки основных органов и проходов

Скелетная мышца прикреплена к костям, и ее сокращение делает возможным передвижение, мимику, позу и другие произвольные движения тела.Сорок процентов вашей массы тела составляют скелетные мышцы. Скелетные мышцы выделяют тепло как побочный продукт своего сокращения и, таким образом, участвуют в тепловом гомеостазе. Дрожь — это непроизвольное сокращение скелетных мышц в ответ на более низкую, чем обычно, температуру тела. Мышечная клетка или миоцит развивается из миобластов, происходящих из мезодермы. Миоциты и их количество остаются относительно постоянными на протяжении всей жизни. Ткань скелетных мышц состоит из пучков, окруженных соединительной тканью.Под световым микроскопом мышечные клетки кажутся полосатыми с множеством ядер, сдавленных вдоль мембран. Стройность возникает из-за регулярного чередования сократительных белков актина и миозина, а также структурных белков, которые связывают сократительные белки с соединительными тканями. Клетки являются многоядерными в результате слияния множества миобластов, которые сливаются, образуя каждое длинное мышечное волокно.

Сердечная мышца образует сократительные стенки сердца. Клетки сердечной мышцы, известные как кардиомиоциты, также кажутся полосатыми под микроскопом.В отличие от волокон скелетных мышц кардиомиоциты представляют собой одиночные клетки с одним центрально расположенным ядром. Основной характеристикой кардиомиоцитов является то, что они сокращаются в соответствии со своим собственным ритмом без внешней стимуляции. Кардиомиоциты прикрепляются друг к другу с помощью специализированных клеточных соединений, называемых интеркалированными дисками. В интеркалированных дисках есть как якорные, так и щелевые соединения. Присоединенные клетки образуют длинные разветвленные волокна сердечной мышцы, которые действуют как синцитий, позволяя клеткам синхронизировать свои действия.Сердечная мышца перекачивает кровь по телу и находится под непроизвольным контролем.

Гладкая мышца Сокращение тканей отвечает за непроизвольные движения внутренних органов. Он образует сократительный компонент пищеварительной, мочевыделительной и репродуктивной систем, а также дыхательных путей и кровеносных сосудов. Каждая клетка имеет веретенообразную форму с одним ядром и без видимых полосок (Рисунок 4.4.1 — Мышечная ткань).

Рисунок 4.4.1 — Мышечная ткань: (a) Клетки скелетных мышц имеют выраженную исчерченность и ядра по периферии.(б) Гладкомышечные клетки имеют одно ядро ​​и не имеют видимых полос. (c) Клетки сердечной мышцы имеют поперечно-полосатую форму и одно ядро. Сверху: LM × 1600, LM × 1600, LM × 1600. (Микрофотографии предоставлены Медицинской школой Риджентс Мичиганского университета © 2012)

Внешний веб-сайт

Посмотрите это видео, чтобы узнать больше о мышечной ткани. Глядя в микроскоп, как можно отличить ткань скелетных мышц от гладких мышц?

Обзор главы

Три типа мышечных клеток: скелетные, сердечные и гладкие.Их морфология соответствует их специфическим функциям в организме. Скелетная мышца является произвольной и реагирует на сознательные раздражители. Клетки полосатые и многоядерные, выглядят как длинные неразветвленные цилиндры. Сердечная мышца непроизвольна и находится только в сердце. Каждая клетка имеет одно ядро, и они соединяются друг с другом, образуя длинные волокна. Клетки прикреплены друг к другу на вставных дисках. Клетки связаны между собой физически и электрохимически, чтобы действовать как синцитий.Клетки сердечной мышцы сокращаются автономно и непроизвольно. Гладкая мышца непроизвольна. Каждая клетка представляет собой веретенообразное волокно и содержит одно ядро. Нет видимых полос, потому что актиновые и миозиновые филаменты не совпадают в цитоплазме.

Вопросы по интерактивной ссылке

Посмотрите это видео, чтобы узнать больше о мышечной ткани. Глядя в микроскоп, как можно отличить ткань скелетных мышц от гладких мышц?

Клетки скелетных мышц поперечно-полосатые.

Вопросы критического мышления

Вы наблюдаете, как клетки в чашке спонтанно сокращаются. Все они сокращаются с разной скоростью, некоторые быстро, некоторые медленно. Через некоторое время несколько ячеек соединяются, и они начинают синхронно сокращаться. Обсудите, что происходит и на какие клетки вы смотрите.

Клетки в чашке — кардиомиоциты, клетки сердечной мышцы. У них есть внутренняя способность сокращаться. Когда они соединяются, они образуют вставные диски, которые позволяют клеткам общаться друг с другом и синхронно сокращаться.

Почему скелетные мышцы выглядят поперечно-полосатыми?

Под световым микроскопом клетки кажутся полосатыми из-за расположения сократительных белков актина и миозина.

мышц — канал лучшего здоровья

В человеческом теле около 600 мышц. Мышцы выполняют ряд функций — от перекачивания крови и поддержки движений до подъема тяжестей или родов. Мышцы работают, сокращаясь или расслабляясь, вызывая движение. Это движение может быть произвольным (то есть движение совершается осознанно) или выполняться без нашего сознательного осознания (непроизвольное).

Глюкоза из углеводов в нашем рационе питает наши мышцы. Для правильной работы мышечной ткани также необходимы определенные минералы, электролиты и другие пищевые вещества, такие как кальций, магний, калий и натрий.

Мышцы могут поражать целый ряд проблем — все они известны как миопатия. Мышечные расстройства могут вызывать слабость, боль или даже паралич.

Различные типы мышц


Три основных типа мышц включают:
  • Скелетную мышцу — специализированную ткань, которая прикрепляется к костям и позволяет двигаться.Вместе скелетные мышцы и кости называются опорно-двигательной системой (также известной как опорно-двигательная система). Вообще говоря, скелетные мышцы сгруппированы в противостоящие пары, такие как бицепсы и трицепсы на передней и задней части плеча. Скелетные мышцы находятся под нашим сознательным контролем, поэтому они также известны как произвольные мышцы. Другой термин — поперечно-полосатые мышцы, поскольку ткань выглядит полосатой при просмотре под микроскопом.
  • Гладкая мышца — расположена в различных внутренних структурах, включая пищеварительный тракт, матку и кровеносные сосуды, такие как артерии.Гладкая мускулатура состоит из слоистых листов, которые волнообразно сокращаются по длине конструкции. Другой распространенный термин — непроизвольные мышцы, поскольку движение гладких мышц происходит без нашего осознания.
  • Сердечная мышца — мышца, специфичная для сердца. Сердце сжимается и расслабляется без нашего осознания.

Состав мышц


Скелетные, гладкие и сердечные мышцы выполняют очень разные функции, но имеют одинаковый базовый состав.Мышца состоит из тысяч плотно связанных друг с другом эластичных волокон. Каждый пучок обернут тонкой прозрачной мембраной, называемой перимизием.

Отдельное мышечное волокно состоит из блоков белков, называемых миофибриллами, которые содержат специальный белок (миоглобин) и молекулы, обеспечивающие кислород и энергию, необходимые для сокращения мышц. Каждая миофибрилла содержит филаменты, которые складываются вместе при получении сигнала к сокращению. Это укорачивает длину мышечного волокна, что, в свою очередь, укорачивает всю мышцу, если одновременно стимулируется достаточное количество волокон.

Нервно-мышечная система


Мозг, нервы и скелетные мышцы работают вместе, вызывая движение. Все это известно как нервно-мышечная система. Типичная мышца обслуживается от 50 до 200 (или более) ветвей специализированных нервных клеток, называемых двигательными нейронами. Они подключаются непосредственно к скелетным мышцам. Кончик каждой ветви называется пресинаптическим окончанием. Точка контакта между пресинаптическим окончанием и мышцей называется нервно-мышечным соединением.

Чтобы переместить определенную часть тела:

  • Мозг отправляет сообщение моторным нейронам.
  • Это вызывает высвобождение химического ацетилхолина из пресинаптических окончаний.
  • Мышца отвечает на ацетилхолин сокращением.

Формы скелетных мышц


Вообще говоря, скелетные мышцы бывают четырех основных форм, в том числе:
  • Веретено — широкое посередине и сужающееся на обоих концах, например, двуглавая мышца на передней части плеча.
  • Плоский — как лист, например диафрагма, отделяющая грудную клетку от брюшной полости.
  • Треугольная — более широкая внизу, суженная вверху, например, у дельтовидных мышц плеча.
  • Круглый — форма кольца, напоминающая пончик, например, мышцы, окружающие рот, зрачки и задний проход. Их также называют сфинктерами.

Мышечные расстройства


Мышечные расстройства могут вызывать слабость, боль, потерю движений и даже паралич.Ряд проблем, влияющих на мышцы, под общим названием миопатия. Общие проблемы с мышцами включают:
  • Травмы или чрезмерное использование, включая растяжения или деформации, судороги, тендинит и синяки
  • Генетические проблемы, такие как мышечная дистрофия
  • Воспаление, например миозит
  • Заболевания нервов, поражающих мышцы, такие как рассеянный склероз
  • Состояния, вызывающие мышечную слабость, такие как метаболические, эндокринные или токсические нарушения; например, заболевания щитовидной железы и надпочечников, алкоголизм, отравление пестицидами, лекарства (стероиды, статины) и миастения гравис
  • Рак, например, саркома мягких тканей.

Куда обратиться за помощью

Что следует помнить

  • В человеческом теле около 600 мышц.
  • Три основных типа мышц включают скелетные, гладкие и сердечные.
  • Мозг, нервы и скелетные мышцы работают вместе, вызывая движение — это вместе известно как нервно-мышечная система.

Гладкие мышцы — анатомия и физиология

Цели обучения

К концу этого раздела вы сможете:

  • Опишите плотное тело
  • Объясните, как гладкие мышцы взаимодействуют с внутренними органами и проходами в теле
  • Объясните, чем гладкие мышцы отличаются от скелетных и сердечных мышц
  • Объясните разницу между гладкими мышцами, состоящими из одного и нескольких единиц

Гладкая мышца (названная так, потому что клетки не имеют бороздок) присутствует в стенках полых органов, таких как мочевой пузырь, матка, желудок, кишечник, и в стенках проходов, таких как артерии и вены кровеносных сосудов. система, а также тракты дыхательной, мочевыделительной и репродуктивной систем ((Рисунок) ab ).Гладкие мышцы также присутствуют в глазах, где они изменяют размер радужной оболочки и форму хрусталика; и в коже, где волосы встают дыбом в ответ на холод или страх.

Гладкая мышечная ткань

Гладкая мышечная ткань находится вокруг органов пищеварительного, дыхательного, репродуктивного трактов и радужной оболочки глаза. LM × 1600. (Микрофотография предоставлена ​​Медицинской школой Риджентс Мичиганского университета © 2012)

Гладкие мышечные волокна имеют веретенообразную форму (широкие в середине и суженные на обоих концах, напоминающие футбольный мяч) и имеют одно ядро; они варьируются от примерно 30 до 200 мкм м (в тысячи раз короче, чем волокна скелетных мышц), и они производят свою собственную соединительную ткань, эндомизий.Хотя у них нет полос и саркомеров, гладкие мышечные волокна содержат сократительные белки актина и миозина, а также толстые и тонкие волокна. Эти тонкие нити скреплены плотными телами. Плотное тело аналогично Z-образным дискам волокон скелетных и сердечных мышц и прикреплено к сарколемме. Ионы кальция поставляются SR в волокнах и выводятся из внеклеточной жидкости через углубления на мембране, называемые калвеолами.

Поскольку гладкомышечные клетки не содержат тропонин, образование поперечных мостиков регулируется не комплексом тропонин-тропомиозин, а регулирующим белком кальмодулином.В гладкомышечном волокне внешние ионы Ca ++ , проходящие через открытые кальциевые каналы в сарколемме, и дополнительный Ca ++ , высвобождаемый из SR, связываются с кальмодулином. Комплекс Ca ++ -кальмодулин затем активирует фермент, называемый киназой миозина (легкой цепи), который, в свою очередь, активирует миозиновые головки, фосфорилируя их (превращая АТФ в АДФ и P i с P i . крепление к голове). Затем головки могут прикрепляться к участкам связывания актина и натягивать тонкие нити.Тонкие нити также прикреплены к плотным телам; структуры, расположенные во внутренней мембране сарколеммы (в местах соединения сращений), которые также имеют прикрепленные к ним шнуровидные промежуточные нити. Когда тонкие волокна проходят мимо толстых волокон, они натягивают плотные тела, структуры, привязанные к сарколемме, которые затем натягивают промежуточные сети волокон по всей саркоплазме. Такое расположение заставляет все мышечное волокно сокращаться таким образом, что концы тянутся к центру, заставляя среднюю часть выпуклости в движении штопора ((Рисунок)).

Сокращение мышц

Плотные тела и промежуточные волокна связаны через саркоплазму, что заставляет мышечные волокна сокращаться.

Хотя сокращение гладких мышц зависит от присутствия ионов Ca ++ , волокна гладких мышц имеют гораздо меньший диаметр, чем клетки скелетных мышц. Т-канальцы не обязательны для достижения внутренней части клетки и, следовательно, не являются необходимыми для передачи потенциала действия глубоко в волокно.Гладкие мышечные волокна имеют ограниченный запас кальция SR, но имеют кальциевые каналы в сарколемме (аналогичные волокнам сердечной мышцы), которые открываются во время потенциала действия вдоль сарколеммы. Приток внеклеточных ионов Ca ++ , которые диффундируют в саркоплазму для достижения кальмодулина, составляет большую часть Ca ++ , который вызывает сокращение гладкомышечной клетки.

Сокращение мышц продолжается до тех пор, пока АТФ-зависимые кальциевые насосы не будут активно транспортировать ионы Ca ++ обратно в SR и из клетки.Однако в саркоплазме остается низкая концентрация кальция для поддержания мышечного тонуса. Этот оставшийся кальций заставляет мышцы слегка сокращаться, что важно в определенных трактах и ​​вокруг кровеносных сосудов.

Поскольку большинство гладких мышц должны функционировать в течение длительных периодов времени без отдыха, их выходная мощность относительно мала, но сокращения могут продолжаться без использования большого количества энергии. Некоторые гладкие мышцы также могут поддерживать сокращения, даже если Ca ++ удален, а миозинкиназа инактивирована / дефосфорилирована.Это может происходить в виде подмножества поперечных мостиков между головками миозина и актина, называемых защелкивающимися мостиками, которые удерживают толстые и тонкие филаменты связанными вместе в течение длительного периода и без необходимости в АТФ. Это позволяет поддерживать мышечный «тонус» гладких мышц, выстилающих артериолы и другие внутренние органы, с очень небольшими затратами энергии.

Гладкая мышца не находится под произвольным контролем; таким образом, это называется непроизвольной мышцей. Триггеры сокращения гладких мышц включают гормоны, нервную стимуляцию ВНС и местные факторы.В определенных местах, например на стенках внутренних органов, растяжение мышцы может вызвать ее сокращение (реакция релаксации стресса).

Аксоны нейронов в ВНС не образуют высокоорганизованных НМС с гладкой мускулатурой, как это видно между двигательными нейронами и волокнами скелетных мышц. Вместо этого существует серия заполненных нейротрансмиттерами выпуклостей, называемых варикозным расширением, когда аксон проходит через гладкие мышцы, свободно формируя двигательные единицы ((Рисунок)). Варикозное расширение вен высвобождает нейротрансмиттеры в синаптическую щель.Также висцеральная мышца в стенках полых органов (кроме сердца) содержит клетки кардиостимулятора. Клетка-кардиостимулятор может спонтанно запускать потенциалы действия и сокращения мышц.

Моторные агрегаты

Серия аксоноподобных опухолей, называемых варикозными расширениями или «бутонами», от вегетативных нейронов, образующих двигательные единицы через гладкие мышцы.

Гладкая мышца устроена двумя способами: как единичная гладкая мышца, что встречается гораздо чаще; и как многоэлементная гладкая мускулатура.Эти два типа имеют разное расположение в теле и разные характеристики. Единичная мышца имеет мышечные волокна, соединенные щелевыми соединениями, так что мышца сокращается как единое целое. Этот тип гладкой мускулатуры находится в стенках всех внутренних органов, кроме сердца (в стенках которого находится сердечная мышца), поэтому его обычно называют висцеральной мышцей. Поскольку мышечные волокна не ограничены пределами организации и растяжимости саркомеров, висцеральные гладкие мышцы обладают реакцией на расслабление стресса.Это означает, что по мере того, как мышца полого органа растягивается при заполнении, механическое напряжение растяжения вызывает сокращение, но за этим немедленно следует расслабление, чтобы орган не опорожнял свое содержимое преждевременно. Это важно для полых органов, таких как желудок или мочевой пузырь, которые постоянно расширяются по мере наполнения. Гладкие мышцы вокруг этих органов также могут поддерживать мышечный тонус, когда орган опорожняется и сжимается, что предотвращает «дряблость» пустого органа.В целом, гладкие висцеральные мышцы вызывают медленные, устойчивые сокращения, которые позволяют таким веществам, как пища в пищеварительном тракте, перемещаться по телу.

Множественные гладкомышечные клетки редко имеют щелевые соединения и, следовательно, электрически не связаны. В результате сокращение не распространяется от одной клетки к другой, а вместо этого ограничивается клеткой, которая была первоначально стимулирована. Стимулы для многокомпонентной гладкой мускулатуры исходят от вегетативных нервов или гормонов, но не от растяжения.Этот тип ткани находится вокруг крупных кровеносных сосудов, в дыхательных путях и в глазах.

Гиперплазия гладкой мышцы

Подобно клеткам скелетных и сердечных мышц, гладкие мышцы могут подвергаться гипертрофии, увеличиваясь в размерах. В отличие от других мышц, гладкие мышцы также могут делиться, чтобы производить больше клеток, и этот процесс называется гиперплазией. Наиболее очевидно это можно наблюдать в матке в период полового созревания, которая реагирует на повышение уровня эстрогена путем производства большего количества гладких мышечных волокон матки и значительно увеличивает размер миометрия.

Сводка по разделам

Гладкие мышцы встречаются по всему телу вокруг различных органов и трактов. Гладкомышечные клетки имеют одно ядро ​​и имеют веретенообразную форму. Клетки гладкой мускулатуры могут подвергаться гиперплазии, митотически делясь с образованием новых клеток. Гладкие клетки гладкие, но их саркоплазма заполнена актином и миозином, а также плотными телами в сарколемме, которые закрепляют тонкие волокна и сеть промежуточных волокон, участвующих в притяжении сарколеммы к середине волокна, укорачивая его в процессе.Ионы Ca ++ вызывают сокращение, когда они высвобождаются из SR и попадают через открытые потенциалозависимые кальциевые каналы. Сокращение гладких мышц инициируется, когда Ca ++ связывается с внутриклеточным кальмодулином, который затем активирует фермент, называемый миозинкиназой, который фосфорилирует миозиновые головки, чтобы они могли образовывать поперечные мостики с актином, а затем тянуть за тонкие нити. Гладкая мускулатура может стимулироваться кардиостимуляторами, вегетативной нервной системой, гормонами, спонтанно или растяжением.Волокна в некоторых гладких мышцах имеют защелкивающиеся мостики, поперечные мостики, которые медленно циклируются без потребности в АТФ; эти мышцы могут поддерживать сокращение на низком уровне в течение длительного времени. Единичная гладкая мышечная ткань содержит щелевые соединения для синхронизации деполяризации и сокращений мембраны, так что мышца сокращается как единое целое. Единичная гладкая мышца в стенках внутренних органов, называемая висцеральной мышцей, обладает реакцией на расслабление стресса, которая позволяет мышцам растягиваться, сокращаться и расслабляться по мере расширения органа.Многокомпонентные гладкомышечные клетки не имеют щелевых соединений, и сокращение не распространяется от одной клетки к другой.

Множественный выбор

Гладкие мышцы отличаются от скелетных и сердечных мышц тем, что ________.

  1. отсутствие миофибрилл
  2. находятся на добровольном контроле
  3. отсутствие миозина
  4. отсутствие актина

Какое из следующих утверждений описывает клетки гладких мышц?

  1. Устойчивы к усталости.
  2. У них быстрое начало схваток.
  3. Столбняк не проявляется.
  4. В основном они используют анаэробный метаболизм.

Вопросы о критическом мышлении

Почему гладкие мышцы могут сокращаться в более широком диапазоне длин в состоянии покоя, чем скелетные и сердечные мышцы?

Гладкие мышцы могут сокращаться в более широком диапазоне длин в состоянии покоя, потому что актиновые и миозиновые нити в гладких мышцах не так жестко организованы, как в скелетных и сердечных мышцах.

Опишите различия между гладкими мышцами, состоящими из одной единицы, и гладкой мышцей, состоящей из нескольких единиц.

Единичная гладкая мышца находится в стенках полых органов; Гладкие мышцы, состоящие из нескольких единиц, находятся в дыхательных путях к легким и крупным артериям. Одноблочные гладкомышечные клетки сокращаются синхронно, они связаны щелевыми контактами и проявляют потенциал спонтанного действия. Многоэлементные гладкие клетки лишены щелевых контактов, и их сокращения не синхронны.

Глоссарий

кальмодулин
Регуляторный белок, облегчающий сокращение гладких мышц
плотное тело
саркоплазматическая структура, которая прикрепляется к сарколемме и укорачивает мышцу, поскольку тонкие волокна скользят мимо толстых волокон
гиперплазия
процесс, в котором одна ячейка делится, чтобы произвести новые ячейки
защелка-перемычка
подмножество поперечного мостика, в котором актин и миозин остаются заблокированными вместе
кардиостимулятор
Клетка, запускающая потенциалы действия в гладких мышцах
реакция релаксации напряжения
Расслабление гладкой мышечной ткани после растяжения
варикозное расширение вен
Увеличение нейронов, высвобождающих нейротрансмиттеры в синаптические щели
висцеральная мышца
гладкая мышца в стенках внутренних органов
.

Комментировать

Ваш адрес email не будет опубликован.